

GainAMP click

PID: MIKROE-2555

Weight: 25 g

GainAMP click carries the LTC®6912 dual channel, low noise, digitally programmable gain amplifier (PGA). The click is designed to work on either 3.3V or 5V power supply. It communicates with the target MCU over SPI interface, with additional functionality provided by the following pins on the mikroBUSTM line: AN, RST.

GainAMP click also features three pairs of screw terminals and a power indication LED.

How it works

The gains for both channels are independently programmable, using a 3-wire SPI interface to select voltage gains of **0**, **1**, **2**, **5**, **10**, **20**, **50**, **and 100V/V** (LTC6912-1). All gains are inverting.

The LTC®6912 consists of 2 matched amplifiers with rail-to-rail outputs. When operated with unity gain, they will also process rail-to-rail input signals.

A half-supply reference generated internally at the AGND pin supports single power supply applications. Operating from single or split supplies from 2.7V to 10.5V total.

Programmable gain amplifier

A programmable-gain amplifier (PGA) is an electronic amplifier whose gain can be controlled externally (by analog or digital signals).

Key features

- LTC®6912 gain amplifier
 - o 2 Channels with Independent Gain Control
 - o 3-Wire SPI Interface
 - o Extended Gain-Bandwidth at High Gains
 - o Rail-to-Rail Input Range
 - o Rail-to-Rail Output Swing
 - o Single or Dual Supply: 2.7V to 10.5V Total
- Screw terminals for input and output
- SPI interface
- 3.3V or 5V power supply

Specification

Product Type	Amplifier			
Applications	Data Acquisition Systems, Dynamic Gain Changing, Automatic Ranging Circuits, Automatic Gain Control.			
MCU	CU LTC®6912 dual channel gain amplifier			
Key Features	Rail-to-Rail Output Swing, Rail-to-Rail Input Range, 2 Channels with Independent Gain Control, Three pairs of screw terminals, 3-wire SPI interface			
Interface	SPI			
Power Supply	3.3V or 5V			
Compatibility	mikroBUS			
Click board size	S (28.6 x 25.4 mm)			

Pinout diagram

This table shows how the pinout on **GainAMP click** corresponds to the pinout on the mikroBUSTM socket (the latter shown in the two middle columns).

Notes	Pin		mikro	BUStm		Pin	Notes
Analog input	AN_IN	1	AN	PWM	16	NC	Not connected
Shut down	SHDN	2	RST	INT	15	NC	Not connected
Chip select	SPI_CS	3	CS	TX	14	NC	Not connected
SPI Clock Input	SPI_CLK	4	SCK	RX	13	NC	Not connected
Not connected	NC	5	MISO	SCL	12	NC	Not connected
SPI Master Output Slave Input	SPI_MOSI	6	MOSI	SDA	11	NC	Not connected
Power supply	+3.3V	7	3.3V	5V	10	+5V	Power supply
Ground	GND	8	GND	GND	9	GND	Ground

Maximum ratings

Description	Min	Тур	Max	Unit
Total Supply Voltage (V+ to V–)			11V	V
Input Current		±10		mA
Operating Temperature Range	–40°C		85°C	

Jumpers and settings

Designator	Name	Default Position	Default Option	Description
JP1	AN_sel	ON	AN	Analog input jumper.
JP2	V+	Left	VCC	V+ selection.
JP3	V-	Left	GND	V- selection.

Programming

Code examples for GainAMP click, written for MikroElektronika hardware and compilers are available on <u>Libstock</u>.

The gains for both channels are independently programmable using an SPI interface to select voltage gains. The example controls channel A, increasing and decreasing gain with input buttons.

Code snippet

The code snippet demonstrates a simple usage of the helper function.

```
01 void main()
02 {
       system_init();
03
04
05
       gain_amp_set(GAIN_AMP_NOMINAL_0, GAIN_AMP_SW_SHUTDOWN);
06
07
       while( 1 )
80
           if(Button(&GPIOE_IDR, 9, 100, 1))
09
10
           {
               byte = gain_amp_set(++gain & 0x07, GAIN_AMP_SW_SHUTDOWN);
11
               GPIOD_ODR = (GPIOD_ODR & 0xFF00) | byte;
12
13
           }
           if(Button(&GPIOE_IDR, 8, 100, 1))
14
15
16
               byte = gain_amp_set(--gain & 0x07, GAIN_AMP_SW_SHUTDOWN);
17
               GPIOD_ODR = (GPIOD_ODR & 0xFF00) | byte;
18
           }
       }
19
20 }
```