High Current High Efficiency Multi-Chemistry Battery Charger with PowerPath Control

description

Demonstration circuit 1614 features the LTC4012CUF, a multi-chemistry single battery charger controller with PowerPath ${ }^{\text {TM }}$ control. The input supply voltage is 13.5 V to 20 V and is initially configured for a current limit of 10A. The charger float voltage is programmed by jumpers to support 1- to 4- series cells of both Li-Ion/Polymer and Li-iron phosphate $\left(\mathrm{LiFePO}_{4}\right)$ at $4.2 \mathrm{~V} / \mathrm{cell}$ and $3.6 \mathrm{~V} /$ cell, for a total of eight settings. The demo board is initially configured for constant-voltage charging of a $12.6 \mathrm{~V} \mathrm{Li}-\mathrm{Ion} /$ Polymer battery and constant-current charging at 8A, though current derating may be necessary due to certain operating conditions.

Charging can be enabled/disabled by properly setting the shutdown jumper. LED indicators for $\overline{\mathrm{CHG}}, \overline{\mathrm{ICL}}, \overline{\mathrm{ACP}}$, and $\mathrm{C} / 10$ display the current state of the charger system. Although this charger is not a smart battery charger, a popular smart battery connector is provided that can be used for further data-logging with the optional DC1223A-B demo board and software. Note that a smart battery is not required to use this board; however, smart batteries are
compatible with this charger. The optional DC1223A-B SMBus-to-RS232 Serial port adapter and associated software can be used to monitor a smart battery for demonstration purposes only. Contact your Linear Technology representative to order a DC1223A-B.

DC1614 features an optional circuit for sealed lead acid (SLA) batteries for constant-voltage charging with temperature compensation and fast/float voltage toggling. DC1614 also features layout for extra components and external gate drivers for improved efficiency at higher charge currents.

This demo board is capable of supporting the LTC4012 and LTC4012-3 with a simple IC swap-out. See the Schematic Diagram.
Design files for this circuit board are available at http://www.linear.com/demo

[^0]
PERFORMADCE SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	VALUE
Minimum Input Voltage	$\mathrm{V}_{\text {IN }}>$ V $_{\text {BAT }}$ Float Voltage	$13.5 \mathrm{~V}_{\text {MIN }}$ When Using 12.6V Li-Ion/Polymer. Recommend 15V
Maximum Input Voltage	Limited by Input Capacitor Voltage Rating	20 V
Input Current Limit	Set by R1 (100mV/R1)	$10 \mathrm{~A}_{\text {DC }} \pm 4 \%$
Default Float Voltage $\mathrm{V}_{\text {BAT }}$	Jumper Selectable: 4.2V/Cell or 3.6V/Cell	$12.6 \mathrm{~V} \pm 1 \%$
Maximum Charge Current	$\mathrm{V}_{\text {IN }}>$ V $_{\text {BAT }}$	$8 \mathrm{~A}_{\text {DC }} \pm 5 \%$

DEMO MANUAL DC1614A

PUICK START PROCEDURE

Demonstration circuit 1614 is easy to set up to evaluate the performance of LTC4012. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With all power off, connect an input power supply capable of more than 10A, system load, battery, and meters as shown in Figure 1. Preset the load to OA and $\mathrm{V}_{\text {IN }}$ to OV, OA current limit. The input supply voltage must be greater than the full voltage value of the battery to allow a full charge to take place.
2. Connect the jumpers as shown below for normal LEDindicated operation:

JP2	JP3	JP4	JP5
Shutdown	V CC Select	Internal V $_{\text {CC }}$	LED PWR
THM	INT	ON	ON

3. Connect the system load to $\mathrm{V}_{\text {OUT }}$ and GND terminals.
4. Connect the jumper JP1 for the specific battery to be tested.
5. Turn the input power supply on, setting the current limit up to 10A. Adjust the voltage to the desired value, up to 20 V .
6. Plug in the battery. An industry-standard 5-pin AMP smart battery connector is provided for convenience. The board will automatically charge a battery upon insertion and detection of a thermistor. Optionally set jumper JP2 to ON to charge a battery without a thermistor.
7. Turn the load on and adjust as necessary. At 10A input, the input current will limit and the ICL LED will turn on. Note that above a certain load setting, depending on your $\mathrm{V}_{\text {IN }}$ and battery voltage, the charger will start to decrease charge current until the system load is consuming all of the current from the input. For 15 V input and $12.6 \mathrm{~V}_{\text {BAT }}$ setting this will occur at about 3.3A.
8. Optionally evaluate the SLA circuit, removing the jumper on JP1, as well as R14. The voltage feedback network can now be customized to match the battery manufacturer's specifications. The SLA circuit can be found in the bottom left-hand corner on the top side of the board.
9. Optionally use the provided DC1223A-B demonstration software to configure and communicate with the DC1614A, connecting DC1223A-B as in Figure 1.
10.For improved efficiency at high charge currents, install additional MOSFETs in Q8 and Q10 positions and/or gate driver circuit transistors and supply capacitors in Q7, Q9, C21, and C25. These components may be installed on the bottom side of the board.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Efficiency Comparison with and without External Gate Drivers at $15 \mathrm{~V}_{\mathrm{IN}}, 18 \mathrm{IV}_{\mathrm{IN}}$, and $24 \mathrm{~V}_{\mathrm{IN}}$
3

DEMO MANUAL DC1614A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/ PART NUMBER
REQUIRED CIRCUIT COMPONENTS:				
1	3	C5, C6, C12	Capacitor, $0.14 \mathrm{~F}, 50 \mathrm{~V}, 10 \% 0603$	TDK C1608X7R1H104K
2	1	C7	Capacitor, 2.2 $2 \mathrm{~F}, 16 \mathrm{~V}, 20 \% 0805$	TDK C2012X5R1C225M
3	8	C8, C9, C10, C11, C16, C17, C18, C19	Capacitor, 10 1 F, 25V, 20\% 1206	Taiyo Yuden TMK316BJ106ML
4	1	C13	Capacitor, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \% 0402$	TDK C1005X7R1C104K
5	1	C15	Capacitor, 4.7nF, 50V, 10\% 0402	TDK C1005X7R1H472K
6	1	C20	Capacitor, 10pF, 50V, $\pm 0.5 \% 0402$	TDK C1005C0G1H100D
7	1	D1	Diode Schottky, 30V, SOD-323	Central Semi. CMDSH-3TR
8	1	D2	Diode Schottky, 40V/3A	ON Semiconductor MBRS340T3
9	1	L1	Inductor, $2.2 \mu \mathrm{H}$	Vishay IHLP-2525CZ-01 2R2uH
10	1	Q1	MOSFET P-Channel, 30V, PowerPAK1212-8	Vishay Si7129DN-T1-GE3 \#PbF
11	4	Q2, Q3	MOSFET N-Channel, 30V/10A	Renesas RJK0305DPB-00-J0
12	1	R1	Resistor, $0.010 \Omega, 1 \mathrm{~W}, 1 \% 2512$	IRC LR2512-01-R010-F
13	1	R3	Resistor, 5.1k, 1/16W, 1\% 0603	Vishay CRCW06035K10FKEA
14	1	R8	Resistor, 6.04k, 1/16W, 1\% 0402	Vishay CRCW04026K04FKEA
15	1	R10	Resistor, $0.012 \Omega, 1 \mathrm{~W}, 1 \% 2512$	IRC LR2512-01-R012-F
16	1	R13	Resistor, 27.4k, 1/16W, 1\% 0402	Vishay CRCW040227K4FKEA
17	1	R14	Resistor, 184k, 1/16W, 0.25\% 0402	NIC Comp NTR-04C1843DTRF
18	2	R15, R16	Resistor, 3.01k, 1/16W, 1\% 0402	Vishay CRCW04023K01FKEA
19	1	R19	Resistor, 19.6k, 1/16W, 0.25\% 0402	NIC Comp NTR-04C1962DTRF
20	1	U1	I.C. Battery Charger QFN (20) (UF) $4 \mathrm{~mm} \times 4 \mathrm{~mm}$	Linear Technology LTC4012CUF

1	1	C1	Capacitor, 10山F, 35V, 20\% CAP-CE-5X6.0	Sanyo 35CE10AX
2	1	C2	Capacitor, 0.1μ F, 50V, \% 0603	TDK C1608X7R1H104K
3	1	C14	Capacitor, 0402 Optional	
4	2	C21, C25	Capacitor, 0.1 1 F, 16V, 10\% 0402	TDK C1005X7R1C104K
5	1	C22	Capacitor, $1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% 1206$	AVX 12063C105KAT
6	1	C23	Capacitor, 0.1 1 F, 50V, 10\% 0603	TDK C1608X7R1H104K
7	1	C24	Capacitor, 10^F, 16V, 20\% 3528	AVX TAJB106M016
8	0	D3	Diode Schottky Rectifier, 40V/5A Powermite 3	
9	1	D4	Diode Zener, 18V, SOD-323	Diodes Inc., MMSZ5248BS
10	2	D5, D8	Diode (Green)	Panasonic LN1351C-(TR) PBF
11	2	D6, D7	Diode (Yellow)	Panasonic LN1451C-(TR) PBF
12	0	L2	Inductor, IHLP5050 Optional	
13	0	L3	Inductor, CEP125 Optional	
14	2	Q4, Q16	MOSFET N-Channel, SOT23	Zetex 2N7002
15	0	Q5, Q6	MOSFET P-Channel, 30V, PowerPAK1212-8	Vishay Si7129DN-T1-GE3 \#PbF
16	2	Q7, Q9	XSTR., 12V NPN/PNP SOT23-6	Diode Inc ZXTC2063E6
17	2	Q8, Q10	MOSFET N-Channel, 30V/10A	Renesas RJK0305DPB-00-J0

DEMO MANUAL DC1614A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/ PART NUMBER
18	1	Q11	MOSFET P-Channel, 30V, PowerPAK1212-8	Vishay Si7129DN-T1-GE3 \#PbF
19	1	Q12	Transistor, SOT-323	On Semi., MMBT3906WT1G
20	3	Q13, Q14, Q15	MOSFET P-Channel, S0T23	Siliconix TP0610T
21	1	Q17	MOSFET N-Channel, 20V SC-75	Philips Semi. (NXP) PMR280UN
22	0	RT1	Thermistor, 0603 0ptional	
23	1	R2	Resistor, $10 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \% 0603$	NIC Comp NCR06F1002TRF
24	1	R4	Resistor, $165 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \% 0402$	Vishay CRCW0402165KFKEA
25	3	R5, R6, R30	Resistor, $100 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \% 0402$	AAC, CR05-104JM
26	1	R7	Resistor, $10 \Omega, 1 / 16 \mathrm{~W}, 5 \% 0603$	Vishay CRCW060310R0JNEA
27	3	R9, R12, R43	Resistor, $0 \Omega, 1 / 16 \mathrm{~W}, 1 \mathrm{~A} 0603$	Vishay CRCW06030000ZEA
28	1	R17	Resistor, $74.1 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C7412DTRF
29	1	R18	Resistor, $30.9 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C3092DTRF
30	1	R20	Resistor, $14.3 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C1432DTRF
31	1	R21	Resistor, $93.1 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C9312DTRF
32	1	R22	Resistor, $37 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C3702DTRF
33	1	R23	Resistor, $23.2 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C2322DTRF
34	1	R24	Resistor, $16.9 \mathrm{k}, 1 / 16 \mathrm{~W}, 0.25 \% 0402$	NIC Comp NTR-04C1692DTRF
35	1	R25	Resistor, $232 \Omega, 1 / 16 \mathrm{~W}, 1 \% 0402$	Vishay CRCW0402232RFKED
36	1	R26	Resistor, $499 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \% 0603$	Vishay CRCW0603499KFKEA
37	1	R27	Resistor, $10 \Omega, 1 / 16 \mathrm{~W}, 5 \% 0603$	AAC, CR05-104JM
38	1	R31	Resistor, $28 \mathrm{k}, 1 / 16 \mathrm{~W}, 1 \% 0603$	Vishay CRCW060328K0FKEA
39	4	R32, R33, R34, R35	Resistor, $300 \Omega, 1 / 16 \mathrm{~W}, 5 \% 0603$	AAC CR16-301JM
40	0	R36, R37, R38, R40, R41, R42	Resistor, 06030 0ptional	
41	1	U2	I.C., Voltage Regulator DFN (06) (DC) $2 \mathrm{~mm} \times 2 \mathrm{~mm}$	Linear Technology LT3008EDC-5

1	1	JP1	Headers, Double-Row, 2mm $\times 8 \mathrm{~mm}, 2 \mathrm{~mm}$ Centers	Samtec TMM-108-02-L-D
2	1	JP2	Headers, Double-Row, 2mm $\times 3 \mathrm{~mm}, 2 \mathrm{~mm}$ Centers	Samtec TMM-103-02-L-D
3	3	JP3, JP4, JP5	Headers, Single-Row, 3 Pins, 2mm Centers	Samtec TMM-103-02-L-S
4	5	XJP1, XJP2, XJP3 ,XJP4, XJP5	Shunt, 2mm Centers	Samtec 2SN-BK-G
5	6	J1, J2, J3, J4, J5, J6	Connector, Banana Jack	Keystone 575-4
6	1	J7	Connector, AMP-787441-1	Amp Inc. 787441-1
7	1	P1	Connector DB, R-Angle Female 15-pin	Amp 1-1734530-3
8	13	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13	Turret, Test Point MM/2308	Mill Max 2308
9	0	THERM1, THERM2, TP14	Turret, Test Point MM/2308 Optional	Mill Max 2308
10	4		Stand-Off, Nylon 0.5" tall	Keystone, 8833 (Snap On)

DEMO MANUAL DC1614A

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the intercoonnection of its circuits as described herein will not infringe on existing patent tights.

DEMO MANUAL DC1614A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

[^0]: $\boldsymbol{\Sigma} \boldsymbol{\top}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PowerPath is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

