NLHV4157N

Negative Voltage SPDT Switch

The NLHV4157N is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. The device passes analog and digital negative voltages that may vary across the full power-supply range (from V_{EE} to GND).

Features

- Operating Voltage Range: $\mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V}$ to -4 V
- Switch Signal Voltage Range: $\mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}}$ to GND
- Positive Control Signal Voltage: $\mathrm{V}_{\mathrm{IN}}=0$ to 3.3 V
- Low ON Resistance: $\mathrm{R}_{\mathrm{ON}} \leq 5 \Omega$ @ $\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}$
- Latch-up Performance Exceeds 200 mA
- Available in: SC-88 6-Pin Package
- These Devices are $\mathrm{Pb}-$ Free, Halogen-Free/BFR-Free and are RoHS-Compliant

Figure 1. Pin Assignment and logic Diagram

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
MARKING
DIAGRAM
SF SUFFIX
CASE 419B
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

FUNCTION TABLE

Select Input	Function
L	B0 Connected to A
H	B1 Connected to A

ORDERING INFORMATION

Device	Package	Shipping †
NLHV4157NDFT2G	SC-88 $($ Pb-Free $)$	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLHV4157N

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{EE}	DC Supply Voltage	-13 to +0.5	V
$V_{\text {IS }}$	Analog Input Voltage (Note 1)	$\mathrm{V}_{\mathrm{EE}}-0.5$ to +0.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage (Note 1)	-0.5 to +3.6	V
liok	Switch Input/Output diode current	± 50	mA
$\mathrm{I}_{\text {IK }}$	Select input diode current	-50	mA
P_{D}	Power Dissipation in Still Air	60	mW
T_{L}	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$
TJ	Junction Bias Under Bias	150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL94-V0 (0.125 in)	${ }^{\circ} \mathrm{C}$
I_{L}	Latch-up Current (Note1)	$\begin{aligned} & \pm 200 \\ & \hline \pm 300 \end{aligned}$	mA
T_{s}	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{J A}$	Thermal Resistance	400	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	ESD ProtectionHuman Body Model Machine Model	3000 150	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The input and output voltage ratings may be exceeded if the input and output diode current ratings are observed.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Symbol	Parameter	Min	Max	Unit
V_{EE}	DC Supply Voltage	-12	-4	V
$\mathrm{~V}_{\mathrm{S}}$	Switch Input / Output Voltage	$(\mathrm{B} 0, \mathrm{~B} 1, \mathrm{~A})$	V_{EE}	GND
V_{IN}	Digital Select Input Voltage	GND	3.3	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Rise or Fall Time (Select Input)	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
2. Select input must be held HIGH or LOW, it must not float.

NLHV4157N

DC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND; Typical characteristics are T_{A} at $25^{\circ} \mathrm{C}$.)

Symbol			-55° to $125^{\circ} \mathrm{C}$				
	Parameter	Condition		Min	Typ	Max	Unit

SELECT INPUT

V_{IH}	Minimum High-Level Input Voltage		-12	1.8		3.3	V
			-10	1.6		3.3	
			-8	1.4		3.3	
			-6	1.2		3.3	
			-4	1.0		3.3	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		-12	0		0.8	V
			-10	0		0.7	
			-8	0		0.6	
			-6	0		0.5	
			-4	0		0.4	
IN	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ or GND	-10		± 0.2	± 50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ or GND, test at $25^{\circ} \mathrm{C}$ only	-10			± 0.5	

POWER SUPPLY

| IcC | Maximum Quiescent
 Supply Current | Select $=3.3$ V or GND,
 $V_{\text {IS }}=V_{\text {EE }}$ or GND | -10 to -4 | 25 | 80 | $\mu \mathrm{~A}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ANALOG SWITCH

R ON	Maximum ON Resistance (Note 3)	$\begin{aligned} & V_{I N}=V_{\text {II }} \text { or } V_{\text {IH }} \\ & V_{I S}=V_{E E} \text { to } G N D \\ & l_{0} \leq 10 \mathrm{~mA} \end{aligned}$	-12	2.6	4.5	Ω
			-10	3.0	5	
			-8	3.5	5.8	
			-6	4.5	7.5	
		$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} \\ & V_{I S}=V_{E E} \text { to } G N D \\ & l_{0} \leq 5 \mathrm{~mA} \end{aligned}$	-4	9	15	
$\mathrm{R}_{\text {FLAT }}$	ON Resistance Flatness (Notes 3, 4, 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{II}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { to } G N D \\ & \mathrm{I}_{\mathrm{O}} \leq 10 \mathrm{~mA} \end{aligned}$	-12	0.4		Ω
			-10	1.2		
			-8	1.7		
			-6	2.5		
		$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} \\ & V_{I S}=V_{E E} \text { to } G N D \\ & l_{0} \leq 5 \mathrm{~mA} \end{aligned}$	-4	6		
$\Delta \mathrm{R}_{\text {ON }}$	Ron Mismatch Between (Notes 3, 4, 5)	$\mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=-8.4 \mathrm{~V}$	-12	0.2		Ω
		$\mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=-7 \mathrm{~V}$	-10	0.2		
		$\mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=-5.6 \mathrm{~V}$	-8	0.25		
		$\mathrm{I}_{\mathrm{A}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=-4.2 \mathrm{~V}$	-6	0.25		
		$\mathrm{I}_{\mathrm{A}}=-5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=-2.8 \mathrm{~V}$	-4	0.3		
$I_{\mathrm{NC}(\mathrm{OFF}),}$ $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	NC or NO OFF Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{II}} \text { or } \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{Bn}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{EE}} \\ & \text { to } \mathrm{GND} \end{aligned}$	-10	± 1.0	± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Figure 9)	$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} ; \\ & V_{A}=G N D V \text { or } V_{E E} ; \\ & V_{B 1}=G N D \text { or } V_{E E} \text { with } V_{B 0} \text { floating, or } \\ & V_{B 0}=G N D \text { or } V_{E E} \text { with } V_{B 1} \text { floating } \end{aligned}$	-10	± 2.0	± 20	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).
4. Parameter is characterized but not tested in production.
5. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \mathrm{min}$ measured at identical V_{EE}, temperature and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.

NLHV4157N

AC ELECTRICAL CHARACTERISTICS (Voltages referenced to GND; Typical characteristics are T_{A} at $25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{EE}}, \mathrm{V}$	-55° to $125^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
$\mathrm{t}_{\text {PHL }}$, tPLH	Propagation Delay, Bus to Bus (Note 8) (A to B_{n})	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 2, 3)	-12 to -4			2	ns
$t_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Switch Enable Time Turn-On Time (A to B_{n})	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 2, 3)	-12			220	ns
			-10			175	
			-8			165	
			-6			165	
			-4			200	
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Switch Disable Time Turn-Off Time (A to B_{n})	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Figures 2, 3)	-12			225	ns
			-10			155	
			-8			150	
			-6			120	
			-4			145	
t_{B}	Switch Break Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{~V}_{1 \mathrm{~S}}=-2.5 \mathrm{~V} \text { (Figure 4) } \end{aligned}$	-12	5		60	ns
			-10	5		60	
			-8	10		75	
			-6	10		90	
			-4	40		135	
tpor	Power ON Reset Time	Measured from $\mathrm{V}_{\mathrm{EE}}=-4 \mathrm{~V}$	-12 to -4			20	us
Q	Charge Injection (Note 7)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \text { (Figure 5) } \end{aligned}$	-12		170		pC
			-10		120		
			-8		95		
			-6		55		
			-4		40		
OIRR	Off-Isolation (Note 9)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$ (Figure 6)	-12 to -4		-33		dB
Xtalk	Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$ (Figure 7)	-12 to -4		-42		dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Figure 10)	-12 to -4		200		MHz

7. Guaranteed by Design.
8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the ON Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
9. Off Isolation $=20 \log 10[\mathrm{VA} / \mathrm{VBn}]$.

CAPACITANCES (Note 10)

Symbol	Parameter	Test Conditions	Typical @ 25 ${ }^{\circ} \mathbf{C}$	Unit
C_{IN}	Input Capacitance, Select Inputs	$\mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V}$	6	pF
$\mathrm{C}_{\mathrm{IOB}}$	B-Port OFF Capacitance	$\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}$	45	pF
$\mathrm{C}_{\mathrm{IOA}} \mathrm{ON}$	A Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V}$	100	pF

$10 . T_{A}=+25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}$, Capacitance is characterized but not tested in production.

Note: Input $\mathrm{V}_{\text {IS }}$ driven by 50Ω source terminated by 50Ω.
Note: C_{L} includes load and stray capacitance. Input PRR $=100 \mathrm{kHz}, \mathrm{t}_{\mathrm{w}}=5 \boldsymbol{\mu} \mathrm{~s}$.

Parameter	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{V}_{\mathbf{I S}}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open	Source
$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PLZ }}$	GND	V_{EE}
$\mathrm{t}_{\mathrm{PZH}} / \mathrm{t}_{\text {PHZ }}$	$2 \times \mathrm{V}_{\mathrm{EE}}$	GND

Figure 2. AC Test Circuit

Figure 3. AC Test Waveforms

NLHV4157N

Figure 4. Switch Break Interval Timing

Figure 5. Charge Injection Test

Figure 6. Off Isolation

Figure 8. Channel Off Capacitance

Figure 7. Crosstalk

Figure 9. Channel On Capacitance

NLHV4157N

Figure 10. Bandwidth

Figure 11. Typical Application

NLHV4157N

PACKAGE DIMENSIONS

