R01DS0171EJ0310
Rev.3.10
Oct 31, 2016
True Low Power Platform, High Resolution PWM and Rich Analog, 2.7 V to 5.5 V operation, 32 to 64 Kbyte Flash, for Inverter Control, Digital Power Control and Lighting Control Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 2.7 V to 5.5 V operation from a single supply
- Stop (RAM retained): $0.23 \mu \mathrm{~A}$, (LVD enabled): 0.31 $\mu \mathrm{A}$
- Halt (RTC + LVD): $0.60 \mu \mathrm{~A}$
- Operating: $156.25 \mu \mathrm{~A} / \mathrm{MHz}$

16-bit RL78 CPU Core

- Delivers 41 DMIPS at maximum operating frequency of 32 MHz
- Instruction Execution: 86\% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed \& Unsigned: 16×16 to 32-bit result in 1 clock cycle
- MAC: 16×16 to 32 -bit result in 2 clock cycles
- 16-bit barrel shifter for shift \& rotate in 1 clock cycle
- 1-wire on-chip debug function

Main Flash Memory

- Density: 32 KB to 64 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data Flash with background operation
- Data flash size: 4 KB
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 2.7 V to 5.5 V

RAM

- 2 KB to 4 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 32 MHz with + /- 1% accuracy over voltage (2.7 V to 5.5 V) and temperature ($-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
- Pre-configured settings: $32 \mathrm{MHz}, 24 \mathrm{MHz}, 16 \mathrm{MHz}$, $12 \mathrm{MHz}, 8 \mathrm{MHz}, 6 \mathrm{MHz}, 4 \mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz} \& 1$ MHz

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 6 setting options (Interrupt and/or reset function)

Data Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

16-bit timers KB0 to KB2, and KC0 for PWM output

16-bit timers KB0 to KB2: maximum 6 outputs ($3 \mathrm{ch} \times 2$)

- Smooth start function, dithering function, forced output stop function (unsyncronized with comparator or external interrupt) enables OverVoltageProtection, OverCurrentProtection and Peak current control, and single/interleave PFC function
- Average resolution < 1 nsec output, 64 MHz (when using PLL) + dithering option
16-bit timer KC0 (3 ch)
- PWM output gating function by interlocking with 16bit timers KB0, KB1, and KB2

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval Timer: 12-bit, 1 channel
- 15 kHz watchdog timer : 1 channel (window function)

Multiple Communication Interfaces

- Up to $1 \times$ l $^{2} \mathrm{C}$ multi-master (SMBus/PMBus support)
- Up to $1 \times$ CSI/SPI (7-, 8-bit)
- Up to $3 x$ UART (7-, 8-, 9-bit), DALI Support 1ch(8-, 16-, 17-, 24-bit, Master and Slave)
- Up to $1 \times$ LIN

Rich Analog

- ADC: Up to 11 channels, 8/10-bit resolution, $2.125 \mu \mathrm{~s}$ conversion time
- Supports 2.7 V
- Internal voltage reference (1.45 V)
- Comparator: High response time $70 \mathrm{~ns}(t y p),$. Up to 6 channels, Internal DAC 3ch 8 bit resolution, window comparator mode
- PGA (x4 to x32):6 input
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM/SFR write protection
- Illegal memory access detection
- Clock stop/ frequency detection
- ADC self-test

General Purpose I/O

- 5 V tolerant, high-current (up to 8.5 mA per pin)
- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

- Standard: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Extend: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Type and Pin Count

SSOP: 20, 30, 38

- ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/11A		
			20 pins	30 pins	38 pins
64 KB	4 KB	4 KB Note	-	R5F107AE	R5F107DE
32 KB	4 KB	2 KB	R5F1076C	R5F107AC	-

Note This is about 3 KB when the self-programming function and data flash function are used.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/11A

Part No. R 5 F 107 DEGxxxSP\#V0

Package specification: \#V0: Tray (LSSOP30, SSOP38), Tube (LSSOP20) \#XO: Embossed tape (LSSOP, SSOP)
Package type:
SP: LSSOP, 0.65 mm pitch
SSOP, 0.65 mm pitch
ROM number (Omitted with blank products)
Classification:
G: Operating ambient temperature: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
M: Operating ambient temperature: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
ROM capacity:
C: 32 KB
E: 64 KB
Pin count:
6: 20-pin
A: 30 -pin
D: 38-pin

RL78/I1A group

Memory type:
F: Flash memory
\square Renesas MCU
Renesas semiconductor product

Pin count	Package	Operating Ambient Temperature	Part Number
20 pin	$20-$ pin plastic LSSOP (4.4×6.5)	$\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$	R5F1076CGSP\#V0, R5F1076CGSP\#X0
	TA $=-40$ to $+125^{\circ} \mathrm{C}$	R5F1076CMSP\#V0, R5F1076CMSP\#X0	

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

- 20-pin plastic LSSOP (4.4 x 6.5)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
3. The shared function CMP3P can be assigned to P147 by setting the CMPSELO bit in the comparator input switch control register (CMPSEL).
1.3.2 30-pin products

- 30-pin plastic LSSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
1.3.3 38 -pin products

- 38-pin plastic SSOP (7.62 mm (300))

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/IAA User's Manual.

1.4 Pin Identification

ANIO to ANI2,		REGC:	Regulator Capacitance
ANI4 to ANI7,		RESET:	Reset
ANI16 to ANI19:	Analog Input	RTC1HZ:	Real-time Clock Correction Clock
AVrefm:	Analog Reference Voltage Minus		(1 Hz) Output
AVrefp:	Analog Reference Voltage Plus	RxD0, RxD1,	
CMP0P to CMP5P:	Comparator Analog Input	DALIRxD4:	Receive Data
CMPCOM:	Comparator External Reference	SCK00:	Serial Clock Input/Output
	Voltage	SCLAO:	Serial Clock Input/Output
EXCLK:	External Clock Input (Main System	SDAAO:	Serial Data Input/Output
	Clock)	SIOO:	Serial Data Input
EXCLKS:	External Clock Input (Subsystem	SO00:	Serial Data Output
	Clock)	TI03, TIO5, TI06,	
INTP0, INTP3,		TIO7:	Timer Input
INTP4, INTP9,		TO03, TO05, TO06,	
INTP10, INTP11,		TKBO00, TKBO01 to	
INTP20 to INTP23:	Interrupt Request from Peripheral	TKBO20, TKBO21,	
P02, P03,		TKCO00 to TKCO05:	Timer Output
P05, P06:	Port 0	TOOLO:	Data Input/Output for Tool
P10 to P12:	Port 1	TxRx4:	Serial Data Input/Output for Single
P 20 to P22,			Wired UART
P24 to P27:	Port 2	TxD0, TxD1	
P30, P31:	Port 3	DALITxD4:	Transmit Data
P40:	Port 4	Vdo:	Power Supply
P75 to P77:	Port 7	Vss:	Ground
P120 to P124:	Port 12	X1, X2:	Crystal Oscillator (Main System Clock)
P137:	Port 13	XT1, XT2:	Crystal Oscillator (Subsystem Clock)
P147:	Port 14		
P200 to P206:	Port 20		

1.5 Block Diagram

1.5.1 20-pin products

Remarks 1. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.
2. The shared function CMP3P can be assigned to P147 by setting the CMPSELO bit in the comparator input switch control register (CMPSEL).

1.5.2 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/I1A User's Manual.

1.5.3 38 -pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR1) or the input switch control register (ISC). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR1) and Figure 15-20 Format of Input Switch Control Register (ISC) in the RL78/11A User's Manual.

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR1) is set to 00 H .

Notes 1. This is about 3 KB when the self-programming function and data flash function are used. (For details, see CHAPTER 3 in the RL78/I1A User's Manual.)
2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves) (see 6.9.3 Operation as multiple PWM output function in the RL78/I1A User's Manual).

Notes 1. The subsystem clock (fsub) can be selected as the operating clock only for 38 -pin products.
2. The 20 - and 30 -pin products can only be used as the constant-period interrupt function.
3. The comparator input is alternatively used with analog input pin (ANI pin).
4. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or onchip debug emulator.
5. The 20 pin products can only be used 1 UART simultaneously due to sharing of the same I/O pins.
(3/3)

Item	20-pin		30-pin	38-pin
	R5F1076C		R5F107AC, R5F107AE	R5F107DE
Power-on-reset circuit	- Power-on-reset: 1.51 V (TYP.) - Power-down-reset: 1.50 V (TYP.)			
Voltage detector	- Rising edge: $\quad 2.81 \mathrm{~V}$ to 4.06 V (6 stages) - Falling edge: 2.75 V to 3.98 V (6 stages)			
On-chip debug function	Provided			
Power supply voltage	$V_{D D}=2.7$ to 5.5 V			
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$ (M: Industrial applications)			

2. ELECTRICAL SPECIFICATIONS

(G: Industrial applications, $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)

In this chapter, shows the electrical spesificatons of the target products.
Target products (G: Industrial applications): $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ R5F107xxGxx

Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 Functions for each product in the RL78/I1A User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
REGC pin input voltage	Viregc	REGC	$\begin{aligned} & \quad-0.3 \text { to }+2.8 \\ & \text { and }-0.3 \text { to } V_{D D}+0.3^{\text {Note } 1} \end{aligned}$	V
Input voltage	V_{11}	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	-0.3 to $V_{\text {dD }}+0.3{ }^{\text {Note } 2}$	V
Output voltage	Vo1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-0.3 to $V_{D D}+0.3^{\text {Note } 2}$	V
Analog input voltage	$\mathrm{V}_{\text {Al1 }}$	ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$\begin{aligned} & -0.3 \text { to } \mathrm{VDD}_{\mathrm{DD}}+0.3 \\ & \text { and }-0.3 \text { to } \mathrm{AV}_{\operatorname{REF}(+)} \\ & +0.3^{\text {Notes } 2,3} \end{aligned}$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
2. Must be 6.5 V or lower.
3. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
2. $A V_{\text {REF (}) \text { : }}$: side reference voltage of the A / D converter.
3. Vss: Reference voltage

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Ioh1	Per pin	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, P120, } \\ & \text { P147, P200 to P206 } \end{aligned}$	-40	mA
		Total of all pins$-170 \mathrm{~mA}$	P02, P03, P40, P120	-70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Іон2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, Iow	IoL1	Per pin	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, P120, } \\ & \text { P147, P200 to P206 } \end{aligned}$	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	IoL2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$	In normal operation mode		-40 to +105	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)	Ceramic resonator/crystal resonator		1.0		20.0	MHz
XT1 clock oscillation frequency (fxT)	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/I1A User's Manual.

2.2.2 On-chip oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note } 1}$	fiH		1		32	MHz
High-speed on-chip oscillator clock frequency accuracy ${ }^{\text {Note } 2}$		$\mathrm{T}_{\mathrm{A}}=-20$ to $85^{\circ} \mathrm{C}$	-1		+1	\%
		$\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$	-1.5		+1.5	\%
Low-speed on-chip oscillator clock frequency	fil			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	\%

Notes 1. Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte ($000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}$).
2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

2.2.3 PLL characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PLL input clock frequency ${ }^{\text {Note }}$	fpLlin	High-speed system clock is selected ($\mathrm{f}_{\mathrm{MX}}=4 \mathrm{MHz}$)	3.94	4.00	4.06	MHz
		High-speed on-chip oscillator clock is selected ($\mathrm{f}_{\mathrm{H}}=4 \mathrm{MHz}$)	3.94	4.00	4.06	MHz
PLL output clock frequency ${ }^{\text {Note }}$	fpLL		fpluin $\times 16$			MHz

Note This only indicates the oscillator characteristics. See AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Іон1	Per pin for P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$-3.0{ }^{\text {Note } 2}$	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-1.0	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70 \%^{\text {Note } 3}$)	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-12.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-4.0	mA
		$\begin{aligned} & \text { Total of P05, P06, P10 to P12, P30, P31, } \\ & \text { P75 to P77, P147, P200 to P206 } \\ & \text { (When duty } \leq 70 \%^{\text {Note } 3} \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$			-10.0	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}$ DD $<4.0 \mathrm{~V}$			-14.0	mA
	Іон2	Per pin for P20 to P22, P24 to P27	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$-0.1{ }^{\text {Note } 2}$	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-0.7	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor $\leq 70 \%$.

The output current value that has changed to the duty factor > 70\% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=($ Іон $\times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and I н $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note } 1}$	loL1	$\begin{aligned} & \text { Per pin for P02, P03, P05, P06, } \\ & \text { P10 to P12, P30, P31, P40, } \\ & \text { P75 to P77, P120, P147, P200 to P206 } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$8.5{ }^{\text {Note } 2}$	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{do}}<4.0 \mathrm{~V}$			$1.5^{\text {Note } 2}$	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70 \%^{\text {Note }}{ }^{3}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			40.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			7.5	mA
		Total of P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206 (When duty $\leq 70 \%^{\text {Note }{ }^{3}}$)	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			40.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			17.5	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			25.0	mA
	lol2	Per pin for P20 to P22, P24 to P27	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$0.4{ }^{\text {Note } 2}$	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			2.8	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor $\leq 70 \%$.

The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=($ loL $\times 0.7) /(n \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and IoL $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	Normal input buffer	0.8 VdD		Vdd	V
	VIH2	P03, P10, P11	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.1		Vdd	V
			TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	2.0		Vod	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{VDD}^{2}<3.3 \mathrm{~V}$	1.5		Vdd	V
Input voltage, low	VIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, $\overline{R E S E T}$	Normal input buffer	0		0.2 VDD	V
	VIL2	P03, P10, P11	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}$	0		0.32	V

Caution The maximum value of V_{i} of pins $\mathrm{P} 02, \mathrm{P} 10$ to P 12 is Vdd, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}^{2}=-3.0 \mathrm{~mA} \end{aligned}$	VDd - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{H} 1}=-1.0 \mathrm{~mA} \end{aligned}$	VDD -0.5			V
	VoH2	P20 to P22, P24 to P27	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { Іон } 2=-100 \mu \mathrm{~A} \end{aligned}$	Vdd - 0.5			V
Output voltage, low	VoL1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=4.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{L} 1}=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
	Vot2	P20 to P22, P24 to P27	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL } 2=400 \mu \mathrm{~A} \end{aligned}$			0.4	V

Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P20 to P22, P24 to P27, P30, } \\ & \text { P31, P40, P75 to P77, P120, } \\ & \frac{\text { P137, P147, P200 to P206, }}{\text { RESET }} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				1	$\mu \mathrm{A}$
	ILIH2	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, XT1, XT2, EXCLK, } \\ & \text { EXCLKS) } \end{aligned}$	$V_{1}=V_{D D}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P20 to P22, P24 to P27, P30, } \\ & \text { P31, P40, P75 to P77, P120, } \\ & \frac{\text { P137, P147, P200 to P206, }}{\text { RESET }} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	ILIL2	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, XT1, XT2, EXCLK, } \\ & \text { EXCLKS) } \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, } \\ & \text { P120, P147, P200 to P206 } \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss, }}$ In input port		10	20	100	$\mathrm{k} \Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)(1 / 2)$

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\mathrm{fiH}_{\mathrm{H}}=32 \mathrm{MHz}{ }^{\text {Note }} 3$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		5.0	7.5	mA
					$V_{D D}=3.0 \mathrm{~V}$		5.0	7.5	mA
				$\mathrm{fiH}_{\mathrm{H}}=24 \mathrm{MHz}{ }^{\text {Note }} 3$	$V_{D D}=5.0 \mathrm{~V}$		3.9	5.8	mA
					$V_{\text {dD }}=3.0 \mathrm{~V}$		3.9	5.8	mA
				$\mathrm{fiH}^{\prime}=16 \mathrm{MHz}{ }^{\text {Note } 3}$	$V_{\text {dd }}=5.0 \mathrm{~V}$		2.9	4.2	mA
					$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$		2.9	4.2	mA
			LS (lowspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & \mathrm{ffH}_{\mathrm{H}}=8 \mathrm{MHz}{ }^{\text {Note } 3}, \\ & \mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$V_{D D}=3.0 \mathrm{~V}$		1.3	2.0	mA
			HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & f_{M X}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		3.2	4.9	mA
					Resonator connection		3.3	5.0	mA
				$\begin{aligned} & f_{M X}=20 \mathrm{MHz}^{\text {Note } 2,} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		3.2	4.9	mA
					Resonator connection		3.3	5.0	mA
				$\begin{aligned} & f_{M x}=10 \mathrm{MHz}^{\text {Note 2 }}, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		2.0	2.9	mA
					Resonator connection		2.0	2.9	mA
				$\begin{aligned} & f_{M X}=10 \mathrm{MHz}^{\text {Note } 2,} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		2.0	2.9	mA
					Resonator connection		2.0	2.9	mA
			LS (lowspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz} \mathrm{Mote}^{\text {2 }}, \\ & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{TA}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.2	1.8	mA
					Resonator connection		1.2	1.8	mA
			HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & \mathrm{f}_{\mathrm{IH}}=4 \mathrm{MHz} \\ & \mathrm{fPLL}^{\text {Note } 3} \\ & \hline 4 \mathrm{MHz}, \mathrm{fCLK}=32 \mathrm{MHz} \end{aligned}$	$V_{D D}=5.0 \mathrm{~V}$		5.4	8.5	mA
					$V_{D D}=3.0 \mathrm{~V}$		5.4	8.5	mA
				$\begin{aligned} & \mathrm{f}_{\mathrm{H}}=4 \mathrm{MHz} \\ & \mathrm{fPLL}^{\text {Note } 3} \\ & =64 \mathrm{MHz}, \mathrm{f}_{\mathrm{CLK}}=16 \mathrm{MHz} \end{aligned}$	$V_{D D}=5.0 \mathrm{~V}$		3.3	5.7	mA
					$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$		3.3	5.7	mA
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} z^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.2	6.0	$\mu \mathrm{A}$
					Resonator connection		4.4	6.2	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.2	6.0	$\mu \mathrm{A}$
					Resonator connection		4.4	6.2	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.3	7.2	$\mu \mathrm{A}$
					Resonator connection		4.5	7.4	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\mathrm{SUB}}=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.4	8.1	$\mu \mathrm{A}$
					Resonator connection		4.6	8.3	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		5.2	11.4	$\mu \mathrm{A}$
					Resonator connection		5.4	11.6	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		6.9	20.8	$\mu \mathrm{A}$
					Resonator connection		7.1	21.0	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to $V_{D D}$ or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator and subsystem clock are stopped.
3. When high-speed system clock and subsystem clock are stopped.
4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 $=1$ (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12bit interval timer, and watchdog timer.
5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
LS (low-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fif: High-speed on-chip oscillator clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\left.\mathrm{Vss}=0 \mathrm{~V}\right)(2 / 2)$

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	Ido2 ${ }^{\text {Note } 2}$	HALT mode	HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\mathrm{fiH}^{\prime}=32 \mathrm{MHz}{ }^{\text {Note }} 4$	$V_{D D}=5.0 \mathrm{~V}$		0.72	2.9	mA
					$\mathrm{V}_{\mathrm{dd}}=3.0 \mathrm{~V}$		0.72	2.9	mA
				$\mathrm{fiH}^{\prime}=24 \mathrm{MHz}{ }^{\text {Note }} 4$	$V_{\text {do }}=5.0 \mathrm{~V}$		0.57	2.3	mA
					$V_{D D}=3.0 \mathrm{~V}$		0.57	2.3	mA
				$\mathrm{fiH}_{\mathrm{I}}=16 \mathrm{MHz}{ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.50	1.7	mA
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.50	1.7	mA
			LS (lowspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{IH}}=8 \mathrm{MHz}^{\text {Note } 4}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$V_{D D}=3.0 \mathrm{~V}$		320	910	$\mu \mathrm{A}$
			HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}{ }^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.40	1.9	mA
					Resonator connection		0.50	2.0	mA
				$\begin{aligned} & f_{M X}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.40	1.9	mA
					Resonator connection		0.50	2.0	mA
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}{ }^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.24	1.02	mA
					Resonator connection		0.30	1.08	mA
				$\begin{aligned} & f_{M X}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.24	1.02	mA
					Resonator connection		0.30	1.08	mA
			LS (lowspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}{ }^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		130	720	$\mu \mathrm{A}$
					Resonator connection		170	760	$\mu \mathrm{A}$
			HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \hline \mathrm{ff}_{\mathrm{H}}=4 \mathrm{MHz}^{\text {Note } 4} \\ & \mathrm{fPLL}=64 \mathrm{MHz}, \mathrm{fcLK}=32 \mathrm{MHz} \end{aligned}$	$V_{D D}=5.0 \mathrm{~V}$		1.15	4.0	mA
					$V_{\text {dD }}=3.0 \mathrm{~V}$		1.15	4.0	mA
				$\begin{aligned} & \mathrm{ff}_{\mathrm{H}}=4 \mathrm{MHz}^{\text {Note } 4} \\ & \mathrm{fPLL}=64 \mathrm{MHz}, \mathrm{fCLK}=16 \mathrm{MHz} \end{aligned}$	$V_{D D}=5.0 \mathrm{~V}$		0.95	3.2	mA
					$V_{\text {dd }}=3.0 \mathrm{~V}$		0.95	3.2	mA
			Subsystem clock operation	$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz} z^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.70	$\mu \mathrm{A}$
					Resonator connection		0.47	0.89	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz} z^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.33	0.70	$\mu \mathrm{A}$
					Resonator connection		0.52	0.89	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.41	1.90	$\mu \mathrm{A}$
					Resonator connection		0.60	2.09	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.54	2.80	$\mu \mathrm{A}$
					Resonator connection		0.73	2.99	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz} \mathrm{z}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.27	6.10	$\mu \mathrm{A}$
					Resonator connection		1.46	6.29	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz} \mathrm{z}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		3.04	15.5	$\mu \mathrm{A}$
					Resonator connection		3.23	15.7	$\mu \mathrm{A}$
	IdD3 ${ }^{\text {Note } 6}$	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.23	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.27	1.70	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.44	2.60	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.17	5.90	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				2.94	15.3	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator and subsystem clock are stopped.
4. When high-speed system clock and subsystem clock are stopped.
5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC $=1$ and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
LS (low-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiH: High-speed on-chip oscillator clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_{A}=$ $25^{\circ} \mathrm{C}$
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL ${ }^{\text {Note } 1}$					0.20		$\mu \mathrm{A}$
RTC operating current	IRTC Notes 1, 2, 3					0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	IIT Notes 1, 2, 4					0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IwdT Notes 1, 2, 5	$\mathrm{fiL}=15 \mathrm{kHz}$				0.22		$\mu \mathrm{A}$
A/D converter operating current	Iadc Notes 1, 6	When conversion at maximum speed	Normal mode, $\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			1.3	1.7	mA
			Low voltage mode, $\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$			0.5	0.7	mA
A/D converter reference voltage current	$\mathrm{IADREF}^{\text {Note }} 1$					75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITMPS $^{\text {Note }} 1$					75.0		$\mu \mathrm{A}$
LVD operating current	ILvD ${ }^{\text {Notes 1, } 7}$					0.08		$\mu \mathrm{A}$
Self- programming operating current	IfsP ${ }^{\text {Notes 1, } 8}$					2.50	12.2	mA
Programmable gain amplifier operating current	IPGA ${ }^{\text {Note } 9}$			$\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V}$		0.21	0.31	mA
				$A V_{\text {Refp }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		0.18	0.29	mA
Comparator operating current	Icmp ${ }^{\text {Note } 10}$	When one comparator channel is operating		$\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		41.4	62	$\mu \mathrm{A}$
				$\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		37.2	59	$\mu \mathrm{A}$
	Ivref	When one internal reference voltage circuit is operating		$\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\text {dD }}=5.0 \mathrm{~V}$		14.8	26	$\mu \mathrm{A}$
				$\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		8.9	20	$\mu \mathrm{A}$
Programmable gain amplifier/ comparator reference current source	liREF ${ }^{\text {Note } 11}$			$\mathrm{AV}_{\mathrm{REFP}}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.2	5.1	$\mu \mathrm{A}$
				$A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		2.9	4.9	$\mu \mathrm{A}$
BGO operating current	Ibgo ${ }^{\text {Note } 12}$					2.50	12.2	mA
SNOOZE operating current	ISNoz ${ }^{\text {Note } 1}$	ADC operationT Th S	The mode is performed ${ }^{\text {Note } 13}$			0.50	1.1	mA
			/D conversion dard mode, AV	perations are performed, $F P=V_{D D}=5.0 \mathrm{~V}$		2.0	3.04	mA
		CSI/UART operation				0.70	1.54	mA

(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to the VDD.
2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IdD1 or IdD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fil operating current). The current of the RL78 microcontrollers is the sum of the values of either IdD1 or ldD2, and lit, when the 12-bit interval timer operates in operation mode or HALT mode.
5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IwDT when the watchdog timer is in operation.
6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, Idd2 or Iddz and Ilvd when the LVD circuit is in operation.
8. Current flowing during self-programming operation.
9. Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IdD1, IdD2 or IDD3, and IpgA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
10. Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and ICMP, when the comparator is operating.
11. This is the current required to flow to $V_{D D}$ pin of the current circuit that is used as the programmable gain amplifier and the comparator.
12. Current flowing only during data flash rewrite.
13. See 21.3.3 SNOOZE mode in the RL78/I1A User's Manual for shift time to the SNOOZE mode .

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency
2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
3. fclk: CPU/peripheral hardware clock frequency
4. Temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
5. Example of calculating current value when using programmable gain amplifier and comparator.

Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

```
ICmp }\times3+\mathrm{ IVReF + lpgA + lireF
= 41.4[ [ A ] > 3 + 14.8[ [A] > 1 + 210[ [ A ] + 3.2[ [ A ]
= 352.2[ }\mu\textrm{A}
```

Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$)

Icmp $\times 2+$ liref

$$
\begin{aligned}
& =41.4[\mu \mathrm{~A}] \times 2+3.2[\mu \mathrm{~A}] \\
& =86.0[\mu \mathrm{~A}]
\end{aligned}
$$

2.4 AC Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{\mathrm{s}}=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode		0.03125		1	$\mu \mathrm{S}$
			LS (low-speed main) mode	d $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$	0.125		1	$\mu \mathrm{S}$
		Subsystem clock (fsus) operation			28.5	30.5	31.3	$\mu \mathrm{s}$
		In the self programming mode	HS (high-speed main) mode		0.03125		1	$\mu \mathrm{s}$
			LS (low-speed main) mode	d $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	0.125		1	$\mu \mathrm{S}$
External system clock frequency	fex				1.0		20.0	MHz
	fexs				32		35	kHz
External system clock input highlevel width, low-level width	texh, texL				24			ns
	texhs, texLs				13.7			$\mu \mathrm{s}$
TI03, TI05, TI06, TI07 input highlevel width, low-level width	tтін, tTIL				2/fmck +10			ns
TO03, TO05, TO06, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05 output frequency (When duty = 50\%)	fto	HS (high-speed main) mode		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			8	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			4	MHz
		LS (low-speed main) mode, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			4	MHz
				$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			2	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3, INTP4, INTP9 to INTP11, INTP20 to INTP23			1			$\mu \mathrm{S}$
$\overline{\text { RESET }}$ low-level width	trsL				10			$\mu \mathrm{s}$

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSOn bit of timer mode register On (TMROn). n : Channel number ($\mathrm{n}=0$ to 7))

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (LS (low-speed main) mode)

_- When the high-speed on-chip oscillator clock is selected

- - - During self programming
_. . . When high-speed system clock is selected

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIO3, TIO5, TIO6, TIO7

TO03, TO05, TO06, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05

Interrupt Request Input Timing

INTP0, INTP3, INTP4, INTP9 to INTP11,
INTP20 to INTP23

$\overline{\text { RESET }}$ Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)
(1) During communication at same potential (UART mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate ${ }^{\text {Note } 1}$		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		fмск/6		$\mathrm{fmck}^{\prime} 6$	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=$ fcLK $^{\text {Note }} 2$		5.3		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$) LS (low-speed main) mode: $8 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. q : UART number $(q=0,1), g$: PIM and POM number $(g=0,1)$
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03)
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note } 5}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcri \geq 4/fclk	125		500		ns
SCKp high-/low-level width	tKH1, tкı1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	tксү1/2-12		tкcy1/2-50 $^{\text {- }}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$\mathrm{tkCy}^{1 / 2-18}$		tkcy1/2-50		ns
SIp setup time (to SCKp \uparrow) Note 1	tsık1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	44		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$	44		110		ns
Slp hold time (from SCKp $\uparrow)^{\text {Note } 2}$	tks 11		19		19		ns
Delay time from SCKp \downarrow to SOp output ${ }^{\text {Note } 3}$	tksO1	$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 4}$		25		25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SCKp and SOp output lines.
5. Operating conditions of LS (low-speed main) mode is $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. p : CSI number ($p=00$), m : Unit number $(m=0)$, n : Channel number ($n=0$),
g : PIM and POM number ($\mathrm{g}=1$)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$)
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note }} \mathbf{6}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbo I	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$20 \mathrm{MHz}<\mathrm{fmck}$	8/fmск		-		ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	6/fmск		6/fmск		ns
		$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	16 MHz < fmck	8/fmск		-		ns
			$\mathrm{fmCk}^{5} \leq 16 \mathrm{MHz}$	6/fmск		6/fmск		ns
SCKp high-/lowlevel width	$\begin{aligned} & \text { tKH2, } \\ & \mathrm{t}_{\mathrm{KLL} 2} \end{aligned}$			$\mathrm{tkcy}^{\text {/ } / 2 ~}$		$\mathrm{tkCy2}^{\text {/ }}$ 2		ns
SIp setup time (to SCKp \uparrow) ${ }^{\text {Note }} 1$	tsiк2			1/fмск+20		1/fmск +30		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tks 12			1/fмск+31		1/fmск +31		ns
Delay time from SCKp \downarrow to SOp output ${ }^{\text {Note } 3}$	tkso2	$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 4}$			$\begin{gathered} \text { 2/fмск+ } \\ 44 \end{gathered}$		$\begin{gathered} \text { 2/fмск+ } \\ 110 \end{gathered}$	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SOp output lines.
5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
6. Operating conditions of LS (low-speed main) mode is $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00)$, m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0)$,
g : PIM and POM number ($\mathrm{g}=1$)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$)

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remarks 1. p : CSI number $(p=00)$
2. m : Unit number, n : Channel number $(m n=00)$
(4) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Reception	$4.0 \mathrm{~V} \leq \mathrm{Vod} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$		$\mathrm{fmck}^{\prime} / 6^{\text {Note }} 1$		$\mathrm{fmCK}^{\prime} 6^{\text {Note } 1}$	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{f}_{\mathrm{CLK}}{ }^{\text {Note } 2}$		5.3		1.3	Mbps
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		fmck/6 ${ }^{\text {Note }} 1$		$\mathrm{fmCK}^{\text {/ }}{ }^{\text {Note } 1}$	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{fcLK}^{\text {Note } 2}$		5.3		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $\quad 32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.

Caution Select the TTL input buffer for the RxDq pin and the \mathbf{N}-ch open drain output (Vod tolerance) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For V_{IH} and VIL^{\prime}, see the DC characteristics with TTL input buffer selected.

Remarks 1. $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. q : UART number $(q=0,1), g$: PIM and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03)
(4) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note }}{ }^{5}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0 \mathrm{~V} \leq \mathrm{Vod} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V}$		$2.8{ }^{\text {Note } 2}$		$2.8{ }^{\text {Note 2 }}$	Mbps
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V}$		$1.2{ }^{\text {Note } 4}$		$1.2^{\text {Note } 4}$	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\} \times 3}[b p s]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{C}_{b} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
3. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3}[b p s]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{C}_{b} \times \mathrm{R}_{b} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 3 above to calculate the maximum transfer rate under conditions of the customer.
5. Operating conditions of LS (low-speed main) mode is $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register $g(P O M g)$. For V_{H} and $V_{I L}$, see the DC characteristics with TTL input buffer selected.

Remarks 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. $\mathrm{q}:$ UART number $(\mathrm{q}=0,1), \mathrm{g}$: PIM and POM number $(\mathrm{g}=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $\mathrm{R}_{\mathrm{b}}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. $\mathrm{q}:$ UART number $(\mathrm{q}=0,1), \mathrm{g}$: PIM and POM number $(\mathrm{g}=0,1)$
(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note } 3}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	$\mathrm{tkCY} 1^{\text {2 }}$ 2/fcLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	200		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	300		1150		ns
SCKp high-level width	$\mathrm{tkH1}^{1}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkCy1/2-50		tкıү1/2-75		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2 120		tkcy1/2 - 170		ns
SCKp low-level width	tKL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcrı $12-7$		tк¢¢1/2-50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkCy1/2-10		tк¢Yı1/2-50		ns
SIp setup time (to SCKp \uparrow) Note 1	tsık1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		81		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		177		479		ns
Slp hold time $(\text { from SCKp } \uparrow)^{\text {Note }}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		19		ns
Delay time from SCKp \downarrow to SOp output ${ }^{\text {Note }} 1$	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			60		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130		195	ns
SIp setup time (to SCKp \downarrow) Note 2	tsık1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		44		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		44		110		ns
Slp hold time ${ }_{2}^{(\text {from SCKp } \downarrow)^{\text {Note }}}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		19		ns
Delay time from SCKp \uparrow to SOp output ${ }^{\text {Note } 2}$	tksor	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			10		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{Vod}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			10		25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. Operating conditions of LS (low-speed main) mode is $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For $V_{I H}$ and $V_{I L}$, see the DC characteristics with TTL input buffer selected.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0)$,
g : PIM and POM number ($\mathrm{g}=1$)
(6) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note } 3}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 4 / \mathrm{fcLk}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	300		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		1150		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcy} 1 / 2-75^{\text {- }}$		tкcrı1/2-75		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcrı $/ 2-170$		tkcr1/2-170		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcy} 1 / 2-12^{\text {- }}$		$\mathrm{tkcy}^{1} / 2-50$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcrı1/2-18		tkcrı $/ 2-50$		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		81		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		177		479		ns
Slp hold time (from SCKp \uparrow) Note 1	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		19		19		ns
Delay time from SCKp \downarrow to SOp output ${ }^{\text {Note } 1}$	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			100		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			195		195	ns
SIp setup time (to SCKp \downarrow) ${ }^{\text {Note } 2}$	tsık1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		44		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		44		110		ns
Slp hold time (from SCKp \downarrow) Note 2	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \\ & \mathrm{Cb}=30 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \\ & \mathrm{Cb}=30 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & <4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		ns
Delay time from SCKp \uparrow to SOp output ${ }^{\text {Note } 2}$	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$			25		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$			25		25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. Operating conditions of LS (low-speed main) mode is $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.
(Caution and Remarks are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0), g$: PIM and POM number ($\mathrm{g}=1$)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

Remark p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(\mathrm{n}=0), \mathrm{g}$: PIM and POM number (g = 1)

(7) DALI/UART4 mode

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				$\mathrm{fmCK}^{\text {/ }} 12$		fмск/12	bps
		Maximum transfer rate theoretical value HS: fсLк $=32 \mathrm{MHz}$, fмск $=$ fсцк LS: fcLk $=8 \mathrm{MHz}, \mathrm{fmck}=\mathrm{fcLk}$		2.6		0.6	Mbps

Remark fмск: Operation clock frequency of DALI/UART.
(Operation clock to be set by the serial clock select register mn (SPS4).)

Caution Operating conditions of LS (low-speed main) mode is $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$.

2.5.2 Serial interface IICA

(1) $I^{2} C$ standard mode

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note }}{ }^{3}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{2}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode: fclk $\geq 1 \mathrm{MHz}$	0	100	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		4.7		$\mu \mathrm{S}$
Hold time ${ }^{\text {Note } 1}$	thd:sta		4.0		4.0		$\mu \mathrm{S}$
Hold time when SCLA0 $=$ " L "	tıow		4.7		4.7		$\mu \mathrm{S}$
Hold time when SCLA0 = "H"	thigh		4.0		4.0		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dat		250		250		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dAT		0	3.45	0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto		4.0		4.0		$\mu \mathrm{S}$
Bus-free time	tbuF		4.7		4.7		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
3. Operating conditions of LS (low-speed main) mode is $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $\quad C_{b}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$

(2) $I^{2} C$ fast mode

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}^{\text {Note } 3}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	0	400	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		0.6		$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thd:sta		0.6		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " L "	tıow		1.3		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ "H"	thigh		0.6		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dat		100		100		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dAt		0	0.9	0	0.9	$\mu \mathrm{S}$
Setup time of stop condition	tsu:sto		0.6		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF		1.3		1.3		$\mu \mathrm{S}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
3. Operating conditions of LS (low-speed main) mode is $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $\quad \mathrm{C}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage		
	Reference voltage $(+)=$ AVrefp Reference voltage (-) = AVRefm	Reference voltage (+) $=\mathrm{V}_{\mathrm{DD}}$ Reference voltage (-) = Vss	Reference voltage (+) = $\mathrm{V}_{\mathrm{BGR}}$ Reference voltage (-) = AV $\mathrm{V}_{\text {efm }}$
ANI0 to ANI2, ANI4 to ANI7	See 2.6.1 (1).	See 2.6.1 (3).	See 2.6.1 (4).
ANI16 to ANI19	See 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	See 2.6.1 (1).		-

(1) When reference voltage (+)= AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) = AVrefm/ANI1 (ADREFM = 1), target pin: ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$, Reference voltage $(+)=A V_{\text {REFP, Reference }}$ voltage (-) = AVREFM $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$			1.2	± 3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI4 to ANI7	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	Ezs	10-bit resolution $A V_{\text {REFP }}=V_{D D} \text { Note } 3$				± 0.25	\%FSR
Full-scale error ${ }^{\text {Notes 1, } 2}$	Efs	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note } 3}$				± 0.25	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note } 3}$				± 2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$				± 1.5	LSB
Analog input voltage	VAIN	ANI2, ANI4 to ANI7		0		$\mathrm{AV}_{\text {Refp }}$	V
		Internal reference voltage (HS (high-speed main) mode)		$V_{B G R}{ }^{\text {Note }} 4$			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$\mathrm{V}_{\text {TMPS25 }}{ }^{\text {Note }} 4$			V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < Vdd, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
4. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
(2) When reference voltage (+) = AVrefp/ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) = AVrefm/ANI1 (ADREFM = 1), target pin: ANI16 to ANI19
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage $(+)=A V_{\mathrm{REFP}}$, Reference voltage (-) $=A V_{\text {REFM }}=\mathbf{0} \mathbf{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution $A V_{R E F P}=V_{D D}{ }^{\text {Notes } 3}$			1.2	± 5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin : ANI16 to ANI19	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	Ezs	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Notes }} 3$				± 0.35	\%FSR
Full-scale error ${ }^{\text {Notes 1, } 2}$	Efs	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Notes } 3}$				± 0.35	\%FSR
Integral linearity error ${ }^{\text {Note }}$ 1	ILE	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Notes } 3}$				± 3.5	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution $A V_{R E F P}=V_{D D}{ }^{\text {Notes } 3}$				± 2.0	LSB
Analog input voltage	Vain	ANI16 to ANI19		0		$A V_{\text {Refp }}$ and VDD	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < Vdd, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the $M A X$. value when $A V_{\text {REFP }}=V_{D D}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V_{\text {refp }}=\operatorname{Vdd}$.
(3) When reference voltage $(+)=\operatorname{VdD}(\operatorname{ADREFP} 1=0, \operatorname{ADREFP} 0=0)$, reference voltage $(-)=\mathrm{Vss}(\operatorname{ADREFM}=$ 0), target pin: ANIO to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{VdD}$, Reference voltage $\left.(-)=\mathrm{Vss}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution			1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI2, ANI4 to ANI7, ANI16 to ANI19	$3.6 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
Conversion time	tconv	10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	Ezs	10-bit resolution				± 0.60	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	Efs	10-bit resolution				± 0.60	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution				± 4.0	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution				± 2.0	LSB
Analog input voltage	V ${ }_{\text {AIN }}$	ANI0 to ANI2, ANI4 to ANI7		0		VDD	V
		ANI16 to ANI19		0		Vdo	V
		Internal reference voltage (HS (high-speed main) mode)		$V_{B G R}{ }^{\text {Note } 3}$			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$\mathrm{V}_{\text {TMPS25 }}{ }^{\text {Note }} 3$			V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 $=0$), reference voltage $(-)=$ AV Refm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2, ANI4 to ANI7, ANI16 to ANI19
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{V}_{\mathrm{BGR}}{ }^{\text {Note }}{ }^{3}$, Reference voltage $(-)=$ $A V_{\text {refm }}=0 \mathrm{~V}^{\text {Note } 4}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		8			bit
Conversion time	tconv	8-bit resolution	17		39	$\mu \mathrm{~s}$
Zero-scale error ${ }^{\text {Notes 1, 2 }}$	Ezs	8-bit resolution			± 0.60	$\%$ FSR
Integral linearity error ${ }^{\text {Note 1 }}$	ILE	8-bit resolution			± 2.0	LSB
Differential linearity error ${ }^{\text {Note 1 }}$	DLE	8-bit resolution			± 1.0	LSB
Analog input voltage	VAIN		0		VBGR $^{\text {Note 3 }}$	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. See 2.6.2 Temperature sensor/internal reference voltage characteristics.
4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage (- = $=A V_{\text {Refm }}$. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=A V_{\text {REFM }}$. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Temperature sensor output voltage	V $_{\text {TMPS25 }}$	Setting ADS register $=80 \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.05	
Internal reference voltage	V $_{\text {BGRT }}$	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature	V		
Operation stabilization wait time	tamP		5.6		mV / C

2.6.3 Programmable gain amplifier

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{REFP}}=\mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, V ss $=A \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input offset voltage	VIopga					± 5	± 10	mV
Input voltage range	VIPGA				0		$0.9 \mathrm{Vdo} /$ gain	V
Gain error ${ }^{\text {Note } 1}$		4, 8 times					± 1	\%
		16 times					± 1.5	\%
		32 times					± 2	\%
Slew rate ${ }^{\text {Note } 1}$	SRRPGA	Rising edge	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	4,8 times	4			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	1.4			$\mathrm{V} / \mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	4, 8 times	1.8			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	0.5			$\mathrm{V} / \mu \mathrm{s}$
	SRfpgA	Falling edge	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	4, 8 times	3.2			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	1.4			$\mathrm{V} / \mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	4, 8 times	1.2			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	0.5			$\mathrm{V} / \mu \mathrm{s}$
Operation stabilization wait time ${ }^{\text {Note } 2}$	tpga	4,8 times			5			$\mu \mathrm{s}$
		16, 32 times			10			$\mu \mathrm{s}$

Notes 1. When $\mathrm{V}_{\mathrm{IPGA}}=0.1 \mathrm{VDD} /$ gain to $0.9 \mathrm{VDD} /$ gain .
2. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVreFm is selected as GND of the PGA by using the CVRVS1 bit.

2.6.4 Comparator

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{REFP}}=\mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $\left.=A \mathrm{~V}_{\text {REFM }}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	Vıocmp			± 5	± 40	mV
Input voltage range	VICMP	CMP0P to CMP5P	0		VDD	V
		CMPCOM	0.045		0.9Vdd	V
Internal reference voltage deviation	$\Delta \mathrm{V}_{\text {IREF }}$	CmRVM register values: 7FH to 80H ($\mathrm{m}=0$ to 2)			± 2	LSB
		Other than above			± 1	LSB
Response time	tcr, tcF	Input amplitude $= \pm 100 \mathrm{mV}$		70	150	ns
Operation stabilization wait time ${ }^{\text {Note } 1}$	tcmp	$3.3 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	3			$\mu \mathrm{S}$
Reference voltage stabilization wait time	tvr	CVRE: 0 to $1^{\text {Note } 2}$	10			$\mu \mathrm{S}$

Notes 1. Time required until a state is entered where the DC and AC specifications of the comparator are satisfied after the operation of the comparator has been enabled (CMPnEN bit $=1$: $\mathrm{n}=0$ to 5)
2. Enable comparator output (CnOE bit $=1 ; \mathrm{n}=0$ to 5) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to $1 ; \mathrm{m}=0$ to 2) and waiting for the operation stabilization time to elapse.

Remark These characteristics apply when $A V_{\text {refp }}$ is selected as the power supply source of the internal reference voltage by using the CVRVSO bit, and when AVrEFM is selected as GND of the internal reference voltage by using the CVRVS1 bit.

Output voltage Vo

2.6.5 POR circuit characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPor	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ${ }^{\text {Note }}$	TPW		300			$\mu \mathrm{S}$

Note Minimum time required for a POR reset when Vdd exceeds below Vpdr. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDd exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLvdo	Power supply rise time	3.97	4.06	4.14	V
			Power supply fall time	3.89	3.98	4.06	V
		VLVD1	Power supply rise time	3.67	3.75	3.82	V
			Power supply fall time	3.59	3.67	3.74	V
		VLVD2	Power supply rise time	3.06	3.13	3.19	V
			Power supply fall time	2.99	3.06	3.12	V
		VLVD3	Power supply rise time	2.95	3.02	3.08	V
			Power supply fall time	2.89	2.96	3.02	V
		VLVD4	Power supply rise time	2.85	2.92	2.97	V
			Power supply fall time	2.79	2.86	2.91	V
		VLVD5	Power supply rise time	2.75	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
Minimum pulse width		tıw		300			$\mu \mathrm{S}$
Detection delay time						300	$\mu \mathrm{s}$

LVD Detection Voltage of Interrupt \& Reset Mode

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	Vlvdo	$V_{\text {POC2, }} \mathrm{V}_{\text {POC1 }}$, $\mathrm{V}_{\text {POC0 }}=0,1,1$, falling reset voltage: 2.7 V		2.70	2.75	2.81	V
	VLVD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	2.97	V
			Falling interrupt voltage	2.79	2.86	2.91	V
	VLVD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.08	V
			Falling interrupt voltage	2.89	2.96	3.02	V
	VLVD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.14	V
			Falling interrupt voltage	3.89	3.98	4.06	V

2.6.7 Supply voltage rise inclination characteristics

$\left(T_{A}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	$\mathrm{~V} / \mathrm{ms}$

Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VdD rises to within the operating voltage range shown in 32.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage ${ }^{\text {Note 2 }}$	VDDDR		$1.44^{\text {Note } 1}$		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.

2.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1		32	MHz
Number of code flash rewrites ${ }^{\text {Notes } 1,2,3}$	Cerwr	Retained for 20 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note } 3}$	1,000			Times
Number of data flash rewrites ${ }^{\text {Notes 1, 2,3 }}$		Retained for 1 year, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Note 3		1,000,000		
		Retained for 5 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note } 3}$	100,000			
		Retained for 20 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note } 3}$	10,000			

Notes 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
2. When using flash memory programmer and Renesas Electronics self programming library
3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

2.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10		
How long the TOOLO pin must be kept at the low level after a reset ends (except soft processing time)	thD	POR and LVD reset must end before the external reset ends.	1		

<1> The low level is input to the TOOLO pin.
<2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
$<3>$ The TOOLO pin is set to the high level.
<4> Complete the baud rate setting by UART reception.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until an external reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (except soft processing time)

3. ELECTRICAL SPECIFICATIONS
 (M: Industrial applications, $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$)

In this chapter, shows the electrical spesificatons of the target products.
Target products (M: Industrial applications): $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}$ R5F107xxMxx

Cautions 1. The RL78/I1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product. See 2.1 Port Function to 2.2.1 Functions for each product in the RL78/I1A User's Manual.
3. When any of these products are used at $105^{\circ} \mathrm{C}$ or lower, see 2. ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$).

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)(1 / 2)$

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
REGC pin input voltage	Viregc	REGC	$\begin{aligned} & \quad-0.3 \text { to }+2.8 \\ & \text { and }-0.3 \text { to } V_{D D}+0.3^{\text {Note } 1} \end{aligned}$	V
Input voltage	V_{11}	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120 to P124, P137, P147, P200 to P206, EXCLK, EXCLKS, RESET	-0.3 to $\mathrm{V}_{\text {DD }}+0.3{ }^{\text {Note } 2}$	V
Output voltage	Vo1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	-0.3 to $V_{D D}+0.3^{\text {Note } 2}$	V
Analog input voltage	VAl1	ANI0 to ANI2, ANI4 to ANI7, ANI16 to ANI19	$\begin{aligned} & -0.3 \text { to } V_{D D}+0.3 \\ & \text { and }-0.3 \text { to } \mathrm{AV} V_{\text {REF }(+)} \\ & \quad+0.3^{\text {Notes } 2,3} \end{aligned}$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
2. Must be 6.5 V or lower.
3. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
2. $A V_{R E F(+): ~+~ s i d e ~ r e f e r e n c e ~ v o l t a g e ~ o f ~ t h e ~}^{A / D}$ converter.
3. Vss: Reference voltage

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right) \mathbf{(2 / 2)}$

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	Ioh1	Per pin	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, P120, } \\ & \text { P147, P200 to P206 } \end{aligned}$	-40	mA
		Total of all pins$-170 \mathrm{~mA}$	P02, P03, P40, P120	-70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	-100	mA
	Ioh2	Per pin	P20 to P22, P24 to P27	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, P120, } \\ & \text { P147, P200 to P206 } \end{aligned}$	40	mA
		Total of all pins 170 mA	P02, P03, P40, P120	70	mA
			P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206	100	mA
	Iol2	Per pin	P20 to P22, P24 to P27	1	mA
		Total of all pins		5	mA
Operating ambient temperature	$\mathrm{T}_{\text {A }}$	In normal operation mode		-40 to +125	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode		-40 to +105	
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.2 Oscillator Characteristics

3.2.1 $\mathrm{X} 1, \mathrm{XT} 1$ oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock frequency (fx) $)^{\text {Note }}$	Ceramic resonator/ crystal resonator		1.0		20.0	
XT1 clock frequency $\left(\mathrm{fxT}^{\text {Note }}\right.$	Crystal resonator		32	32.768	35	MHz

Note Indicates only permissible oscillator frequency ranges. See AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, see 5.4 System Clock Oscillator in the RL78/I1A User's Manual.

3.2.2 On-chip oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note } 1}$	fiH		1		32	MHz
High-speed on-chip oscillator clock frequency accuracy ${ }^{\text {Note } 2}$		$\mathrm{T}_{\mathrm{A}}=-20$ to $85^{\circ} \mathrm{C}$	-1		+1	\%
		$\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$	-1.5		+1.5	\%
		$\mathrm{T}_{\mathrm{A}}=-40 \text { to } 125^{\circ} \mathrm{C}$ When 16 MHz selected	-2		+2	\%
Low-speed on-chip oscillator clock frequency	fil			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	\%

Notes 1. Frequency can be selected in a high-speed on-chip oscillator. Selected by bits 0 to 3 of option byte (000C2H/010C2H).
2. This indicates the oscillator characteristics only. See AC Characteristics for instruction execution time.

Remark When using the device at an ambient temperature that exceeds $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$, the selectable oscillation frequency is 16 MHz max.

3.2.3 PLL characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
PLL input clock frequency ${ }^{\text {Note }}$	fpLlin	High-speed system clock is selected ($\mathrm{fmx}^{\text {m }}=4 \mathrm{MHz}$)	3.92	4.00	4.08	MHz
		High-speed on-chip oscillator clock is selected ($\mathrm{fiHH}=4 \mathrm{MHz}$)	3.92	4.00	4.08	MHz
PLL output clock frequency ${ }^{\text {Note }}$	fpLL		fpluin $\times 16$			MHz

Note This only indicates the oscillator characteristics. See AC Characteristics for instruction execution time.

Remark When using the device at an ambient temperature that exceeds $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$, only 16 MHz (fpLL $\times 1 / 4$) can be selected as the CPU operating frequency.

3.3 DC Characteristics

3.3.1 Pin characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Іон1	Per pin for P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			$-3.0{ }^{\text {Note } 2}$	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			-1.0	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70 \%^{\text {Note } 3}$)	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-9.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-3.0	mA
		```Total of P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206 (When duty \leq 70% Note 3)```	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-21.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}$			-6.0	mA
		Total of all pins (When duty $\leq 70 \%^{\text {Note } 3}$ )	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-21.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-9.0	mA
	loh2	Per pin for P20 to P22, P24 to P27	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$-0.1^{\text {Note } 2}$	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$ )	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			-0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor $\leq 70 \%$.

The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $n \%$ ).

- Total output current of pins $=($ Іон $\times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and I н $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.


## Caution P02, P10 to P12 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note } 1}$	lol1	```Per pin for P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206```	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$8.5{ }^{\text {Note } 2}$	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{do}}<4.0 \mathrm{~V}$			$1.5^{\text {Note } 2}$	mA
		Total of P02, P03, P40, P120 (When duty $\leq 70 \%{ }^{\text {Note } 3}$ )	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			5.0	mA
		Total of P05, P06, P10 to P12, P30, P31, P75 to P77, P147, P200 to P206   (When duty $\leq 70 \%{ }^{\text {Note } 3}$ )	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			20.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{Vdo}^{2} 4.0 \mathrm{~V}$			10.0	mA
		Total of all pins   (When duty $\leq 70 \%{ }^{\text {Note } 3}$ )	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			40.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{Vdo}^{2} 4.0 \mathrm{~V}$			15.0	mA
	Iol2	Per pin for P20 to P22, P24 to P27	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$0.4{ }^{\text {Note } 2}$	mA
		Total of all pins   (When duty $\leq 70 \%^{\text {Note } 3}$ )	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.6	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor $\leq 70 \%$.

The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{loL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and loL $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	P02, P03, P05, P06, P10 to P12,   P20 to P22, P24 to P27, P30, P31, P40,   P75 to P77, P120 to P124, P137, P147,   P200 to P206, EXCLK, EXCLKS,   RESET	Normal input buffer	0.8Vdd		VDD	V
	$\mathrm{V}_{\mathrm{H} 2}$	P03, P10, P11	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.1		VdD	V
			TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	2.0		VDD	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}$	1.5		VDD	V
Input voltage, low	VIL1	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P20 to P22, P24 to P27, P30, P31, P40, } \\ & \text { P75 to P77, P120 to P124, P137, P147, } \\ & \text { P200 to P206, EXCLK, EXCLKS, } \\ & \frac{\text { RESET }}{} \end{aligned}$	Normal input buffer	0		0.2 VDD	V
	VIL2	P03, P10, P11	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $2.7 \mathrm{~V} \leq \mathrm{VDD}^{2}<3.3 \mathrm{~V}$	0		0.32	V

Caution The maximum value of $\mathrm{V}_{\mathrm{IH}}$ of pins $\mathrm{P} 02, \mathrm{P} 10$ to P 12 is $\mathrm{V}_{\mathrm{dD}}$, even in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{\mathrm{s}}=0 \mathrm{~V}$ )

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VoH1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH} 1=-3.0 \mathrm{~mA} \end{aligned}$	VDD - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH} 1}=-1.0 \mathrm{~mA} \end{aligned}$	VDD - 0.5			V
	VoH2	P20 to P22, P24 to P27	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { Іон } 2=-100 \mu \mathrm{~A} \end{aligned}$	$V \mathrm{DD}-0.5$			V
Output voltage, Iow	Vol1	P02, P03, P05, P06, P10 to P12, P30, P31, P40, P75 to P77, P120, P147, P200 to P206	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=4.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
	Vot2	P20 to P22, P24 to P27	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL2 }=400 \mu \mathrm{~A} \end{aligned}$			0.4	V

## Caution P02, P10 to P12 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P20 to P22, P24 to P27, P30, } \\ & \text { P31, P40, P75 to P77, P120, } \\ & \frac{\text { P137, P147, P200 to P206, }}{\text { RESET }} \end{aligned}$	$V_{I}=V_{D D}$				1	$\mu \mathrm{A}$
	ILIH2	$\begin{aligned} & \mathrm{P} 121 \text { to } \mathrm{P} 124 \\ & \text { (X1, X2, XT1, XT2, EXCLK, } \\ & \text { EXCLKS) } \end{aligned}$	$V_{I}=V_{D D}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	P02, P03, P05, P06, P10 to P12, P20 to P22, P24 to P27, P30, P31, P40, P75 to P77, P120, P137, P147, P200 to P206, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$				-1	$\mu \mathrm{A}$
	ILIL2	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, XT1, XT2, EXCLK, } \\ & \text { EXCLKS) } \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{ss}}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	$\begin{aligned} & \text { P02, P03, P05, P06, P10 to P12, } \\ & \text { P30, P31, P40, P75 to P77, P120, } \\ & \text { P147, P200 to P206 } \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$,	input port	10	20	100	$\mathrm{k} \Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 3.3.2 Supply current characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )(1/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD1	Operating mode	HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\mathrm{fiH}_{\mathrm{H}}=16 \mathrm{MHz}{ }^{\text {Note }} 3$	$V_{D D}=5.0 \mathrm{~V}$		2.9	4.8	mA
					$V_{D D}=3.0 \mathrm{~V}$		2.9	4.8	mA
			HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & \mathrm{f}_{\mathrm{Mx}}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		3.2	5.6	mA
					Resonator connection		3.3	5.7	mA
				$\begin{aligned} & f_{M X}=20 M H z^{\text {Note } 2}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		3.2	5.6	mA
					Resonator connection		3.3	5.7	mA
				$\begin{aligned} & f_{M X}=10 \mathrm{MHz}^{\text {Note } 2,} \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		2.0	3.3	mA
					Resonator connection		2.0	3.3	mA
				$\begin{aligned} & f_{M X}=10 M H z^{\text {Note } 2}, \\ & V_{D D}=3.0 V \end{aligned}$	Square wave input		2.0	3.3	mA
					Resonator connection		2.0	3.3	mA
			HS (highspeed main) mode ${ }^{\text {Note } 5}$	$\begin{aligned} & \mathrm{f}_{\mathrm{H}}=4 \mathrm{MHz} \\ & \mathrm{fPLL}^{\text {Note } 3} \\ & 64 \mathrm{MHz}, \mathrm{fcLK}=16 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.3	6.5	mA
					$V_{D D}=3.0 \mathrm{~V}$		3.3	6.5	mA
			Subsystem clock operation	$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz} z^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.2	6.0	$\mu \mathrm{A}$
					Resonator connection		4.4	6.2	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.2	6.0	$\mu \mathrm{A}$
					Resonator connection		4.4	6.2	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.3	7.2	$\mu \mathrm{A}$
					Resonator connection		4.5	7.4	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		4.4	8.1	$\mu \mathrm{A}$
					Resonator connection		4.6	8.3	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		5.2	11.4	$\mu \mathrm{A}$
					Resonator connection		5.4	11.6	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		6.9	20.8	$\mu \mathrm{A}$
					Resonator connection		7.1	21.0	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz} z^{\text {Note } 4} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$	Square wave input		11.1	51.2	$\mu \mathrm{A}$
					Resonator connection		11.3	51.4	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator and subsystem clock are stopped.
3. When high-speed system clock and subsystem clock are stopped.
4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12bit interval timer, and watchdog timer.
5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 20 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: High-speed on-chip oscillator clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)(2 / 2)$

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD2 ${ }^{\text {Note } 2}$	HALT   mode	HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\mathrm{fiH}=16 \mathrm{MHz}$ Note 4	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		0.50	2.0	mA
					$V_{\text {dD }}=3.0 \mathrm{~V}$		0.50	2.0	mA
			HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.40	2.2	mA
					Resonator connection		0.50	2.3	mA
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.40	2.2	mA
					Resonator connection		0.50	2.3	mA
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.24	1.22	mA
					Resonator connection		0.30	1.28	mA
				$\begin{aligned} & f_{M X}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.24	1.22	mA
					Resonator connection		0.30	1.28	mA
			HS (highspeed main) mode ${ }^{\text {Note } 7}$	$\begin{aligned} & \hline \mathrm{ff}_{\mathrm{IH}}=4 \mathrm{MHz}^{\text {Note } 4} \\ & \mathrm{fPLL}=64 \mathrm{MHz}, \mathrm{fCLK}=16 \mathrm{MHz} \end{aligned}$	$V_{\text {dD }}=5.0 \mathrm{~V}$		0.95	3.7	mA
					$V_{D D}=3.0 \mathrm{~V}$		0.95	3.7	mA
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} z^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.70	$\mu \mathrm{A}$
					Resonator connection		0.47	0.89	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.33	0.70	$\mu \mathrm{A}$
					Resonator connection		0.52	0.89	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz} \mathrm{Z}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.41	1.90	$\mu \mathrm{A}$
					Resonator connection		0.60	2.09	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.54	2.80	$\mu \mathrm{A}$
					Resonator connection		0.73	2.99	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\text {SUB }}=32.768 \mathrm{kHz} \mathrm{z}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.27	6.10	$\mu \mathrm{A}$
					Resonator connection		1.46	6.29	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz} z^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		3.04	15.5	$\mu \mathrm{A}$
					Resonator connection		3.23	15.7	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz} \mathrm{z}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \end{aligned}$	Square wave input		7.20	45.2	$\mu \mathrm{A}$
					Resonator connection		7.53	45.5	$\mu \mathrm{A}$
	$\text { IDD3 }{ }^{\text {Note } 6}$	STOP   mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.23	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.27	1.70	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.44	2.60	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.17	5.90	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				2.94	15.3	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$				7.14	45.1	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to $V_{D D}$ or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, comparator, programmable gain amplifier, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator and subsystem clock are stopped.
4. When high-speed system clock and subsystem clock are stopped.
5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC $=1$ and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 20 MHz
8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: High-speed on-chip oscillator clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA $=$ $25^{\circ} \mathrm{C}$

## ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )


(Notes and Remarks are listed on the next page.)

Notes 1. Current flowing to the VDD.
2. When the high-speed on-chip oscillator and high-speed system clock are stopped.
3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed onchip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTc, when the real-time clock is operating in operating mode or in HALT mode. When the low-speed on-chip oscillator is selected, IfIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
4. Current flowing only to the 12-bit interval timer (excluding the operating current of the XT1 oscillator and fiL operating current). The current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the lowspeed on-chip oscillator is selected, Ifil should be added.
5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current value of the RL78 microcontrollers is the sum of IdD1, IdD2 or IdD3, and Iwdt, when the watchdog timer is operating.
6. Current flowing only to the A/D converter. The supply current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC, when the A/D converter is operating in operating mode or in HALT mode.
7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of loD1, IDD2 or IDD3 and ILvD when the LVD circuit is in operation.
8. Current flowing during self-programming operation.
9. Current flowing only to the programmable gain amplifier. The supply current value of the RL78 microcontrollers is the sum of IdD1, IdD2 or IdD3, and IpgA, when the programmable gain amplifier is operating in operating mode or in HALT mode.
10. Current flowing only to the comparator. The supply current value of the RL78 microcontrollers is the sum of IdD1, IDD2 or IdD3, and Icmp, when the comparator is operating.
11. This is the current required to flow to VDD pin of the current circuit that is used as the programmable gain amplifier and the comparator.
12. Current flowing only during data flash rewrite.
13. See 21.3.3 SNOOZE mode in the RL78/I1A User's Manual for shift time to the SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency
2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
3. fcLk: CPU/peripheral hardware clock frequency
4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
5. Example of calculating current value when using programmable gain amplifier and comparator.

Examples 1) TYP. operating current value when three comparator channels, one internal reference voltage generator, and PGA are operating (when $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ )

```
Icmp > 3 + Ivref + lpga + lireF
= 41.4[\muA]\times3+14.8[\muA]\times1 + 210[}\mu\textrm{A}]+3.2[\mu\textrm{A}
= 352.2[}\mu\textrm{A}
```

Examples 2) TYP. operating current value when using two comparator channels, without using internal reference voltage generator (when $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ )

$$
\begin{aligned}
& \text { ICMP } \times 2+\text { liREF } \\
& =41.4[\mu \mathrm{~A}] \times 2+3.2[\mu \mathrm{~A}] \\
& =86.0[\mu \mathrm{~A}]
\end{aligned}
$$

### 3.4 AC Characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )


Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSOn bit of timer mode register On (TMROn). n : Channel number ( $\mathrm{n}=0$ to 7))

## Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)


## AC Timing Test Points



## External System Clock Timing



## TI/TO Timing

TI03, TI05, TI06, TIO7


TO03, TO05, TO06, TKBO00, TKBO01, TKBO10, TKBO11, TKBO20, TKBO21, TKCO00 to TKCO05


Interrupt Request Input Timing


## RESET Input Timing



### 3.5 Peripheral Functions Characteristics

## AC Timing Test Points


3.5.1 Serial array unit 0, 4 (UART0, UART1, CSI00, DALI/UART4)
(1) During communication at same potential (UART mode)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate ${ }^{\text {Note } 1}$				fмск/6	bps
		Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{f}_{\mathrm{CLK}}{ }^{\text {Note } 2}$		3.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The operating frequencies of the $\mathrm{CPU} /$ peripheral hardware clock (fcLk) are: HS (high-speed main) mode: $\quad 20 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ ( PIMg ) and port output mode register g ( POMg ).

Remarks 1. $q$ : UART number ( $q=0,1$ ), g: PIM and POM number ( $g=0,1$ )
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03 )
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq$ 4/fclk	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	250		ns
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tkH1,   tкL1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксү1/2-20		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксү1/2-40		ns
SIp setup time (to SCKp $\uparrow$ ) ${ }^{\text {Note } 1}$	tsik1	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{VD} \leq 5.5 \mathrm{~V}$		80		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		80		ns
SIp hold time (from SCKp $\uparrow$ ) ${ }^{\text {Note } 2}$	tksı11			40		ns
Delay time from SCKp $\downarrow$ to SOp output ${ }^{\text {Note } 3}$	tksO1	$\mathrm{C}=30 \mathrm{pF}^{\text {Note }}$			80	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. $C$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $p$ : CSI number $(p=00)$, $m$ : Unit number $(m=0)$, $n$ : Channel number $(n=0)$, g : PIM and POM number ( $\mathrm{g}=1$ )
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$ )
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 5}$	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	$\mathrm{fmCk}^{5} \mathbf{2 0 \mathrm { MHz }}$	6/fмск		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	16 MHz < fMCK	8/fmск		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	6/fmск		ns
SCKp high-/low-level width				tkcy\%/2		ns
Slp setup time (to SCKp $\uparrow$ ) ${ }^{\text {Note } 1}$	tsIK2			1/fмск+40		ns
Slp hold time (from SCKp $\uparrow$ ) ${ }^{\text {Note } 2}$	tKSI2			1/fмск+60		ns
Delay time from SCKp $\downarrow$ to SOp output ${ }^{\text {Note }} 3$	tkso2	$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 4}$			2/fıск+80	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. $C$ is the load capacitance of the SOp output lines.
5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $\mathrm{p}: \mathrm{CSI}$ number $(\mathrm{p}=00)$, m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0)$,
g : PIM and POM number ( $\mathrm{g}=1$ )
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$ )


CSI mode connection diagram (during communication at same potential)


CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remarks 1. $p: C S I$ number $(p=00)$
2. $m$ : Unit number, $n$ : Channel number $(m n=00)$
(4) Communication at different potential (2.5 V, 3 V ) (UART mode) (1/2)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions			HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$			fмск/6   Note 1	bps
				Theoretical value of the maximum transfer rate $\mathrm{fmck}=\mathrm{fcLK}^{\text {Note }} 2$		3.3	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$			fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $\mathrm{f}_{\mathrm{mcK}}=\mathrm{fcLK}^{\text {Note }} 2$		3.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $\quad 20 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the $\mathbf{N}$-ch open drain output (Vdd tolerance) mode for the TxDq pin by using port input mode register g ( PIMg ) and port output mode register g (POMg).

Remarks 1. $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$ : Communication line voltage
2. $\mathrm{q}:$ UART number $(\mathrm{q}=0,1), \mathrm{g}: \mathrm{PIM}$ and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03)
(4) Communication at different potential (2.5 V, 3 V ) (UART mode) (2/2)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions			HS (high-speed main) Mode		Unit
					MIN.	MAX.	
Transfer rate		Transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{5.5 \mathrm{~V},} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$			Note 1	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V}$		$2.8{ }^{\text {Note 2 }}$	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$			Note 3	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V}$		$1.2^{\text {Note } 4}$	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\} \times 3}[b p s]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{C}_{\mathrm{b}} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

2. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 1 above to calculate the maximum transfer rate under conditions of the customer.
3. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. See Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $\mathrm{Rb}[\Omega]$ : Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$ : Communication line ( TxDq ) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$ : Communication line voltage
2. $q$ : UART number $(q=0,1), g$ : PIM and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03))

UART mode connection diagram (during communication at different potential)


UART mode bit width (during communication at different potential) (reference)


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ (POMg).

Remarks 1. $\mathrm{R}_{\mathrm{b}}[\Omega]$ : Communication line ( TxDq ) pull-up resistance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$ : Communication line voltage
2. $q$ : UART number $(q=0,1), g$ : PIM and POM number $(g=0,1)$
(5) Communication at different potential (2.5 V, 3 V ) (CSI mode) (master mode, SCKp... internal clock output)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main)   Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$\mathrm{tKCY}^{\text {¢ }} \geq 4 / \mathrm{fcLk}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	600		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1000		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcrı $12-80$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tкč1/2-170		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tкcrı1/2-28		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcrı}^{1 / 2-40}$		ns
Slp setup time (to SCKp $\uparrow$ ) ${ }^{\text {Note } 1}$	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		160		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		250		ns
Slp hold time (from SCKp $\uparrow)^{\text {Note } 1}$	tks11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		40		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		40		ns
Delay time from SCKp $\downarrow$ to SOp output ${ }^{\text {Note } 1}$	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			160	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			250	ns
Slp setup time (to SCKp $\downarrow)^{\text {Note } 2}$	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		80		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		80		ns
Slp hold time $(\text { from SCKp } \downarrow)^{\text {Note } 2}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{~b}=1.4 \mathrm{k} \Omega \end{aligned}$	40		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{~b}=2.7 \mathrm{k} \Omega \end{aligned}$	40		ns
Delay time from SCKp $\uparrow$ to SOp output ${ }^{\text {Note } 2}$	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{L}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			80	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			80	ns

Notes 1. When DAPmn $=0$ and $\operatorname{CKPmn}=0$, or DAPmn $=1$ and CKPmn $=1$.
2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
(Caution and Remarks are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register g ( POMg ). For $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)


Remarks 1. $\mathrm{R}_{\mathrm{b}}[\Omega]$ : Communication line (SCKp, SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$ : Communication line (SCKp, SOp ) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$ : Communication line voltage
2. $p$ : CSI number $(p=00)$, $m$ : Unit number $(m=0)$, $n$ : Channel number $(n=0)$, g : PIM and POM number $(\mathrm{g}=1)$

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g ( POMg ).

Remark p : CSI number $(\mathrm{p}=00)$, m : Unit number $(\mathrm{m}=0)$, n : Channel number $(\mathrm{n}=0), \mathrm{g}$ : PIM and POM number ( g =1)
(6) DALI/UART4 mode
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate				$\mathrm{fmck}^{\text {/12 }}$	bps
		Maximum transfer rate theoretical value $\mathrm{fcLK}=20 \mathrm{MHz}, \mathrm{fmck}_{\mathrm{Mc}}=\mathrm{fcLK}$		1.6	Mbps

Remark fмск: Operation clock frequency of DALI/UART.
(Operation clock to be set by the serial clock select register 4 (SPS4).)

### 3.5.2 Serial interface IICA

## (1) $I^{2} C$ standard mode

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fscl	Standard mode: fclk $\geq 1 \mathrm{MHz}$	0	100	kHz
Setup time of restart condition	tsu:sta		4.7		$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thd:STA		4.0		$\mu \mathrm{S}$
Hold time when SCLA0 = "L"	tıow		4.7		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " H "	thigh		4.0		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dAt		250		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dat		0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto		4.0		$\mu \mathrm{S}$
Bus-free time	tbuF		4.7		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $\quad \mathrm{C}_{\mathrm{b}}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$

## (2) $I^{2} C$ fast mode

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLA0 clock frequency	fscl	fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	0	400	kHz
Setup time of restart condition	tsu:sta		0.6		$\mu \mathrm{S}$
Hold time ${ }^{\text {Note } 1}$	thd:STA		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " L "	tıow		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ "H"	thigh		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dAt		100		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dat		0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto		0.6		$\mu \mathrm{s}$
Bus-free time	tbuF		1.3		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thd:dat is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

$$
\text { fast mode: } \quad \mathrm{C}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.1 \mathrm{k} \Omega
$$

IICA serial transfer timing


### 3.6 Analog Characteristics

### 3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage		
	Reference voltage $(+)=$   AVrefp   Reference voltage ( - ) $=$   AVRefm	Reference voltage ( + ) = $\mathrm{V}_{\mathrm{DD}}$   Reference voltage (-) = Vss	Reference voltage ( + ) = VBGR   Reference voltage ( - ) =   AV ${ }_{\text {refm }}$
ANI0 to ANI2, ANI4 to ANI7	See 3.6.1 (1).	See 3.6.1 (3).	See 3.6.1 (4).
ANI16 to ANI19	See 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	See 3.6.1 (1).		-

(1) When reference voltage $(+)=A V_{\text {REFP/ }}{ }_{(+10}$ (ADREFP1 $=0$, ADREFPO $^{=} 1$ ), reference voltage $(-)=$ AVREFm/ANI1 (ADREFM = 1), target ANI pin: ANI2, ANI4 to ANI7, internal reference voltage, and temperature sensor output voltage
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq \mathrm{Vdd} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage ( + ) = AVRefp, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$			1.2	$\pm 3.5$	LSB
Conversion time	tconv	10-bit resolution   Target pin: ANI2, ANI4 to ANI7	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.4		39	$\mu \mathrm{S}$
		10-bit resolution   Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.8		39	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	Ezs	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				$\pm 0.25$	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	Efs	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				$\pm 0.25$	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution   $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note }} 3$				$\pm 2.5$	LSB
Differential linearity error Note 1	DLE	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note } 3}$				$\pm 1.5$	LSB
Analog input voltage	Valn	ANI2, ANI4 to ANI7		0		AVrefp	V
		Internal reference voltage (HS (high-speed main) mode)		$V_{B G R}{ }^{\text {Note }} 4$			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$\mathrm{V}_{\text {TMPS22 }}{ }^{\text {Note } 4}$			V

Notes 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < Vdd, the MAX. values are as follows.

Overall error: Add $\pm 1.0$ LSB to the MAX. value when $A V_{\text {refp }}=V_{d D}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when $A V_{\text {REFP }}=V_{D D}$. Integral linearity error/Differential linearity error: Add $\pm 0.5$ LSB to the MAX. value when $A V_{\text {REFP }}=\operatorname{Vdd}$.
4. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
(2) When reference voltage $(+)=A V_{\text {refp }} /$ ANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVrefm/ANI1 (ADREFM = 1), target pin: ANI16 to ANI19
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, Reference voltage ( + ) $=\mathrm{AV}$ Refp, Reference voltage (-) = AVrefm = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution$A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$			1.2	$\pm 5.0$	LSB
Conversion time	ttonv	10-bit resolution   Target ANI pin : ANI16 to ANI19	$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	3.4		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1,2 }}$	Ezs	10-bit resolution   $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note } 3}$				$\pm 0.35$	\%FSR
Full-scale error ${ }^{\text {Notes } 1,2}$	Efs	10-bit resolution$A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				$\pm 0.35$	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution   $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$				$\pm 3.5$	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution$A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				$\pm 2.0$	LSB
Analog input voltage	$V_{\text {AIN }}$	ANI16 to ANI19		0		AVrefp and Vdd	V

Notes 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < Vdd, the MAX. values are as follows.

Overall error: Add $\pm 4.0$ LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
Zero-scale error/Full-scale error: Add $\pm 0.2 \%$ FSR to the $M A X$. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/Differential linearity error: Add $\pm 2.0$ LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
 target pin: ANIO to ANI2, ANI4 to ANI7, ANI16 to ANI19, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{VDD}$, Reference voltage $\left.(-)=\mathrm{V}_{\mathrm{ss}}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution			1.2	$\pm 7.0$	LSB
Conversion time	tconv	10-bit resolution   Target pin: ANIO to ANI2, ANI4 to ANI7, ANI16 to ANI19	$3.6 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.4		39	$\mu \mathrm{S}$
Conversion time	tconv	10-bit resolution   Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	3.8		39	$\mu \mathrm{S}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	Ezs	10-bit resolution				$\pm 0.60$	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	Efs	10-bit resolution				$\pm 0.60$	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution				$\pm 4.0$	LSB
Differential linearity error ${ }^{\text {Note }}$ 1	DLE	10-bit resolution				$\pm 2.0$	LSB
Analog input voltage	$V_{\text {AIN }}$	ANIO to ANI2, ANI4 to ANI7		0		VdD	V
		ANI16 to ANI19		0		Vod	V
		Internal reference voltage (HS (high-speed main) mode)		$\mathrm{V}_{\mathrm{BGR}} \text { Note } 3$			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$\mathrm{V}_{\text {TMPS25 }}{ }^{\text {Note } 3}$			V

Notes 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
(4) When reference voltage ${ }_{(+)}=$Internal reference voltage (ADREFP1 $=1$, ADREFPO $^{( }=0$ ), reference voltage $(-)=$ AVRefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2, ANI4 to ANI7, ANI16 to ANI19
 $\mathrm{AV}_{\text {REFM }}{ }^{\text {Note } 4}=\mathbf{0} \mathbf{V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES		8			bit
Conversion time	tconv	8-bit resolution	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	Ezs	8-bit resolution			$\pm 0.60$	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	8-bit resolution			$\pm 2.0$	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	8-bit resolution			$\pm 1.0$	LSB
Analog input voltage	Vain		0		$V_{B G R}{ }^{\text {Note } 3}$	V

Notes 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. See 3.6.2 Temperature sensor/internal reference voltage characteristics.
4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage ( - ) = AVREFM.
Integral linearity error: Add $\pm 0.5$ LSB to the MAX. value when reference voltage ( - ) = AVREFM.
Differential linearity error: Add $\pm 0.2$ LSB to the MAX. value when reference voltage ( - ) = AVrefm.

### 3.6.2 Temperature sensor/internal reference voltage characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VbGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVtmps	Temperature sensor that depends on the temperature		-3.6		$\mathrm{mV} / \mathrm{C}$
Operation stabilization wait time	tamp		5			$\mu \mathrm{s}$

### 3.6.3 Programmable gain amplifier

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\text {REFP }}=\mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{A} \mathrm{V}_{\text {REFM }}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input offset voltage	Viopga					$\pm 5$	$\pm 10$	mV
Input voltage range	VIPGA				0		$0.9 \mathrm{Vdo} /$ gain	V
Gain error ${ }^{\text {Note } 1}$		4,8 times					$\pm 1$	\%
		16 times					$\pm 1.5$	\%
		32 times					$\pm 2$	\%
Slew rate ${ }^{\text {Note } 1}$	SRRPGA	Rising edge	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	4, 8 times	4			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	1.4			$\mathrm{V} / \mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	4, 8 times	1.8			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	0.5			$\mathrm{V} / \mu \mathrm{s}$
	SRFPGA	Falling edge	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	4, 8 times	3.2			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	1.4			$\mathrm{V} / \mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	4, 8 times	1.2			$\mathrm{V} / \mu \mathrm{s}$
				16, 32 times	0.5			$\mathrm{V} / \mu \mathrm{s}$
Operation stabilization wait time ${ }^{\text {Note } 2}$	tpga	4,8 times			5			$\mu \mathrm{S}$
		16, 32 times			10			$\mu \mathrm{S}$

Notes 1. When $\mathrm{V}_{\mathrm{IPGA}}=0.1 \mathrm{VdD} /$ gain to $0.9 \mathrm{VdD} /$ gain .
2. Time required until a state is entered where the $D C$ and $A C$ specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

Remark These characteristics apply when AVreFm is selected as GND of the PGA by using the CVRVS1 bit.

### 3.6.4 Comparator



Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input offset voltage	Vıocmp			$\pm 5$	$\pm 40$	mV
Input voltage range	VICMP	CMP0P to CMP5P	0		VDD	V
		CMPCOM	0.045		0.9VdD	V
Internal reference voltage deviation	$\Delta \mathrm{V}$ IREF	CmRVM register values: 7FH to 80 H ( $\mathrm{m}=0$ to 2 )			$\pm 2$	LSB
		Other than above			$\pm 1$	LSB
Response time	tcr, tcF	Input amplitude $= \pm 100 \mathrm{mV}$		70	150	ns
Operation stabilization wait time ${ }^{\text {Note } 1}$	tcmp	$3.3 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{S}$
		$2.7 \mathrm{~V} \leq \mathrm{VdD}<3.3 \mathrm{~V}$	3			$\mu \mathrm{S}$
Reference voltage stabilization wait time	tvr	CVRE: 0 to $1^{\text {Note } 2}$	10			$\mu \mathrm{s}$

Notes 1. Time required until a state is entered where the DC and AC specifications of the comparator are satisfied after the operation of the comparator has been enabled (CMPnEN bit $=1$ : $n=0$ to 5 )
2. Enable comparator output $(\mathrm{CnOE}$ bit $=1 ; \mathrm{n}=0$ to 5$)$ after enabling operation of the internal reference voltage generator (by setting the CVREm bit to $1 ; m=0$ to 2 ) and waiting for the operation stabilization time to elapse.

Remark These characteristics apply when $A V_{\text {refp }}$ is selected as the power supply source of the internal reference voltage by using the CVRVSO bit, and when AVREFM is selected as GND of the internal reference voltage by using the CVRVS1 bit.

Output voltage Vo

Input voltage Vin


### 3.6.5 POR circuit characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.62	V
	VPDR	Power supply fall time	1.44	1.50	1.61	V
Minimum pulse width ${ }^{\text {Note }}$	TPW		300			$\mu \mathrm{S}$

Note Minimum time required for a POR reset when Vdd exceeds below Vpdr. This is also the minimum time required for a POR reset from when Vdd exceeds below 0.7 V to when Vdd exceeds Vpor while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 3.6.6 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\text {PDR }} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s=0 \mathrm{~V}$ )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VIvdo	Power supply rise time	3.97	4.06	4.25	V
			Power supply fall time	3.89	3.98	4.15	V
		VLVD1	Power supply rise time	3.67	3.75	3.93	V
			Power supply fall time	3.59	3.67	3.83	V
		VLVD2	Power supply rise time	3.06	3.13	3.28	V
			Power supply fall time	2.99	3.06	3.20	V
		VLVD3	Power supply rise time	2.95	3.02	3.17	V
			Power supply fall time	2.89	2.96	3.09	V
		VLVD4	Power supply rise time	2.85	2.92	3.07	V
			Power supply fall time	2.79	2.86	2.99	V
		VLVD5	Power supply rise time	2.75	2.81	2.95	V
			Power supply fall time	2.70	2.75	2.88	V
Minimum pulse width		tıw		300			$\mu \mathrm{S}$
Detection delay time						300	$\mu \mathrm{S}$

## LVD Detection Voltage of Interrupt \& Reset Mode

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLVDo	$V_{\text {POC2 }}, \mathrm{V}_{\text {POC1 }}, \mathrm{V}_{\text {POC0 }}=0,1,1$, falling reset voltage: 2.7 V		2.70	2.75	2.88	V
	VLVD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.85	2.92	3.07	V
			Falling interrupt voltage	2.79	2.86	2.99	V
	VLVD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.95	3.02	3.17	V
			Falling interrupt voltage	2.89	2.96	3.09	V
	VLVD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.97	4.06	4.25	V
			Falling interrupt voltage	3.89	3.98	4.15	V

### 3.6.7 Supply voltage rise inclination characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage rise	SVDD				54	$\mathrm{~V} / \mathrm{ms}$

Caution Keep the internal reset status by using the LVD circuit or an external reset signal until VdD rises to within the operating voltage range shown in 33.4 AC Characteristics.

### 3.7 RAM Data Retention Characteristics

( $\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+125^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Uata retention supply voltage ${ }^{\text {Note 2 }}$	VDDDR		$1.47^{\text {Note } 1}$		5.5

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.


### 3.8 Flash Memory Programming Characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	1		32	MHz
Number of code flash rewrites ${ }^{\text {Notes 1, 2, } 3}$	Cerwr	Retained for 20 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note 3, }}$	1,000			Times
Number of data flash rewrites ${ }^{\text {Notes 1, 2, } 3}$		Retained for 1 year, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{\text {Note 3, }} 4$		1,000,000		
		Retained for 5 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Note 3,4	100,000			
		Retained for 20 years, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note 3, }} 4$	10,000			

Notes 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
2. When using flash memory programmer and Renesas Electronics self programming library
3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
4. These are the average temperature of during the retainment.

### 3.9 Dedicated Flash Memory Programmer Communication (UART)

$\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115.2 k		1 M	bps

### 3.10 Timing of Entry to Flash Memory Programming Modes

$\mathrm{T}_{\mathrm{A}}=-40$ to $+125^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
How long from when an external   reset ends until the initial   communication settings are   specified	tsulis	POR and LVD reset must end before the   external reset ends.			100
How long from when the TOOL0 pin   is placed at the low level until an   external reset ends	tsu	POR and LVD reset must end before the   external reset ends.	10		
How long the TOOLO pin must be   kept at the low level after a reset   ends   (except soft processing time)	thD	POR and LVD reset must end before the   external reset ends.	1		


<1> The low level is input to the TOOLO pin.
<2> The external reset ends (POR and LVD reset must end before the pin reset ends.).
$<3>$ The TOOLO pin is set to the high level.
<4> Complete the baud rate setting by UART reception.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
tsu: How long from when the TOOLO pin is placed at the low level until an external reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (except soft processing time)

## 4. PACKAGE DRAWINGS

### 4.1 20-pin Products

R5F1076CGSP\#V0, R5F1076CGSP\#X0, R5F1076CMSP\#V0, R5F1076CMSP\#X0

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP38-0300-0.65	PRSP0038JA-A	P38MC-65-2A4-2	0.3



Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.


### 4.2 30-pin Products

R5F107ACGSP\#V0, R5F107AEGSP\#V0, R5F107ACGSP\#X0, R5F107AEGSP\#X0, R5F107ACMSP\#V0, R5F107AEMSP\#V0, R5F107ACMSP\#X0, R5F107AEMSP\#X0

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



## NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

### 4.3 38-pin Products

R5F107DEGSP\#V0, R5F107DEGSP\#X0, R5F107DEMSP\#V0, R5F107DEMSP\#X0

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP38-0300-0.65	PRSP0038JA-A	P38MC-65-2A4-2	0.3



Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
© 2012 Renesas Electronics Corporation. All rights reserved.

## NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

## Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibiity for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

## "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

## Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Rukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-132
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
Tel: No. 363 , Fu Shing North Road, Taipei 10543, Taiwan
Tel: + +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hytlux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: $+65-6213-0300$
Renesas Electronics Malaysia Sdn. Bhd.
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
$12 \mathrm{~F} ., 234$ Teheran-ro, Gangnam-Gu, S
Ren., 234 Techeran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: $+82-2-558-3737$, Fax: $+82-2-558-5141$

