Features

- EXTREMELY Low Jitter
- Low Cost
- XPRESS Delivery
- Frequency Resolution to six decimal places
- Absolute Pull Range (APR) of ±50ppm
- -20 to +70°C or -40 to +85°C operating temperatures
- Tri-State Enable / Disable Feature
- Industry Standard Package, Footprint & Pin-Out
- Fully RoHS compliant
- Gold over Nickel Termination Finish
- Serial ID with Comprehensive Traceability

Applications

- ANY application requiring an oscillator
- SONET
- Ethernet
- Storage Area Network
- Broadband Access
- Microprocessors / DSP / FPGA
- Industrial Controllers
- Test and Measurement Equipment
- Fiber Channel

Description

The Fox XPRESSO Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. XPRESSO utilizes a family of proprietary ASICs, designed and developed by Fox, with a key focus on noise reduction technologies.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.

With the XPRESS lead-time, low cost, low noise, wide frequency range, excellent ambient performance, XpressO is an excellent choice over the conventional technologies.

Finished XPRESSO parts are 100% final tested.
Model Selection Guide & Fox Part Number

STEP #1: Customer selects the Model Description and provides to Fox Customer Service

Model Description

```
FVXO - H C 5 3 B R - 35.328
```

- **H** = HCMOS
- **C** = Ceramic
- **5** = 5 x 3.2mm
- **3** = 3.3V
- **B** = ±50ppm Absolute Pull Range
- **R** = -40°C to +85°C
- **blank** = -20°C to +70°C

Frequency (in MHz)

Resolutions to 6 places past the decimal point

- **793** = 35.328

STEP #2: The Fox Customer Service team provides a customer specific Part Number for use on their Bill Of Materials (BOM).

Fox Part Number *(The assigned Fox Part Number must be on the BOM – not the above Model Description)*

(This will ensure receipt of the proper part)

- **The 1st Field**
 - **Product Code #**
 - **793** = FVXO–HC5
 - **792** = FVXO–HC7
 - **797** = FVXO–LC5
 - **794** = FVXO–LC7
 - **795** = FVXO–PC5
 - **796** = FVXO–PC7

- **The 2nd Field**
 - **The Customer’s Frequency**
 - **793** = 35.328

- **The 3rd Field**
 - **Fox Internally Generated Number**
 - *(If any specification changes, the last digits change)*
 - *(The same specs for a different customer also changes the last digits)*

This example, FVXO-HC53BR-35.328 = Voltage Controlled, HCMOS Output, Ceramic, 5 x 3.2mm Package, 3.3V, ±50 PPM Absolute Pull Range, -40 to +85°C Temperature Range, at 35.328 MHz

Absolute Maximum Ratings *(Useful life may be impaired. For user guidelines only, not tested)*

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Condition</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>V_DD</td>
<td>Condition</td>
<td>−0.5V to +5.0V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_AMAX</td>
<td>Condition</td>
<td>−55°C to +105°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_STG</td>
<td>Condition</td>
<td>−55°C to +125°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td></td>
<td></td>
<td>150°C</td>
</tr>
<tr>
<td>ESD Sensitivity</td>
<td>HBM</td>
<td>Human Body Model</td>
<td>1 kV</td>
</tr>
</tbody>
</table>
Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Condition</th>
<th>Maximum Value (unless otherwise noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>FO</td>
<td></td>
<td>0.750 to 250.000 MHz</td>
</tr>
<tr>
<td>Absolute Pull Range</td>
<td>APR</td>
<td></td>
<td>± 50 ppm MIN</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>TO</td>
<td>Standard operating</td>
<td>-20°C to +70°C</td>
</tr>
<tr>
<td></td>
<td>TSTG</td>
<td>Optional operating</td>
<td>-40°C to +85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Storage</td>
<td>-55°C to +125°C</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>Standard</td>
<td>3.3 V ± 5%</td>
</tr>
<tr>
<td>Input Current (15pF LOAD)</td>
<td>IDD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75 ~ 20 MHz</td>
<td></td>
<td>32 mA</td>
<td></td>
</tr>
<tr>
<td>20 ~ 50 MHz</td>
<td></td>
<td>35 mA</td>
<td></td>
</tr>
<tr>
<td>50 ~ 130 MHz</td>
<td></td>
<td>47 mA</td>
<td></td>
</tr>
<tr>
<td>130 ~ 200 MHz</td>
<td></td>
<td>55 mA</td>
<td></td>
</tr>
<tr>
<td>200 ~ 250 MHz</td>
<td></td>
<td>60 mA</td>
<td></td>
</tr>
<tr>
<td>Output Load</td>
<td>HCMOS</td>
<td>Standard</td>
<td>15 pF</td>
</tr>
<tr>
<td>15 MHz</td>
<td></td>
<td>30 pF</td>
<td></td>
</tr>
<tr>
<td>Start-Up Time</td>
<td>TS</td>
<td></td>
<td>10 mS</td>
</tr>
<tr>
<td>Output Enable/Disable Time</td>
<td></td>
<td></td>
<td>100 nS</td>
</tr>
<tr>
<td>Moisture Sensitivity Level</td>
<td>MSL</td>
<td>JEDEC J-STD-20</td>
<td>1</td>
</tr>
<tr>
<td>Termination Finish</td>
<td></td>
<td>Au</td>
<td></td>
</tr>
</tbody>
</table>

Note 1 – Inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.

Frequency Control (Vc) Input -- pin #1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Condition</th>
<th>Maximum Value (unless otherwise noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage Tuning Slope</td>
<td>LVC</td>
<td>0V to VDD</td>
<td>40 ~ 75 ppm/V Typ²</td>
</tr>
<tr>
<td>Control Voltage Linearity</td>
<td>LVC</td>
<td></td>
<td>± 10%</td>
</tr>
<tr>
<td>Control Voltage Tuning Range</td>
<td>Vc</td>
<td></td>
<td>0V ~ 3.3V</td>
</tr>
<tr>
<td>Modulation Bandwidth</td>
<td>BW</td>
<td></td>
<td>10 kHz</td>
</tr>
<tr>
<td>Nominal Control Voltage</td>
<td>VCNOM</td>
<td>@ f₀</td>
<td>1.65V</td>
</tr>
</tbody>
</table>

NOTES:

1. Actual slope is affected by frequency and accuracy settings.
2. For an example of linearity, see the graph below. *(The middle line represents the default Fox factory setting)*

![Graph showing FVXO Oscillator Pull](image-url)
Output Wave Characteristics

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Condition</th>
<th>Maximum Value (unless otherwise noted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output LOW Voltage</td>
<td>V_{OL}</td>
<td>0.75 to 150 MHz</td>
<td>10% V_{DD}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150+ to 250 MHz</td>
<td>20% V_{DD}</td>
</tr>
<tr>
<td>Output HIGH Voltage</td>
<td>V_{OH}</td>
<td>0.75 to 150 MHz</td>
<td>90% V_{DD} MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150+ to 250 MHz</td>
<td>80% V_{DD} MIN</td>
</tr>
<tr>
<td>Output Symmetry (See Drawing Below)</td>
<td></td>
<td>@ 50% V_{DD} Level</td>
<td>45% ~ 55%</td>
</tr>
<tr>
<td>Output Enable (PIN # 2) Voltage</td>
<td>V_{IH}</td>
<td></td>
<td>> 70% V_{DD}</td>
</tr>
<tr>
<td>Output Disable (PIN # 2) Voltage</td>
<td>V_{IL}</td>
<td></td>
<td>< 30% V_{DD}</td>
</tr>
<tr>
<td>Cycle Rise Time (See Drawing Below)</td>
<td>T_R</td>
<td>0.75 to 150 MHz</td>
<td>3 nS (10%~90%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150+ to 250 MHz</td>
<td>3 nS (20%~80%)</td>
</tr>
<tr>
<td>Cycle Fall Time (See Drawing Below)</td>
<td>T_F</td>
<td>0.75 to 150 MHz</td>
<td>3 nS (90%~10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150+ to 250 MHz</td>
<td>3 nS (80%~20%)</td>
</tr>
</tbody>
</table>

If 30% to 70% times are used, Rise and Fall times change to 1.5 nS from 0.75 to 250MHz
If 20% to 80% times are used, Rise and Fall times change to 2 nS from 0.75 to 150MHz

Rise Time / Fall Time Measurements

- 10% to 90% Rise Time
- 90% to 10% Fall Time
- 80 to 20 Times
- 70 to 30 Times

Oscillator Symmetry

- On Time 1/2 Period
- Off Time 1/2 Period

Ideally, Symmetry should be 50/50 -- Other expressions are 45/55 or 55/45
Jitter is frequency dependent. Below are typical values at select frequencies.

Phase Jitter & Time Interval Error (TIE)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Phase Jitter (12kHz to 20MHz)</th>
<th>T I E (Sigma of Jitter Distribution)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.5 MHz</td>
<td>0.93</td>
<td>2.8</td>
<td>pS RMS</td>
</tr>
<tr>
<td>106.25 MHz</td>
<td>0.86</td>
<td>3.2</td>
<td>pS RMS</td>
</tr>
<tr>
<td>125 MHz</td>
<td>0.75</td>
<td>2.7</td>
<td>pS RMS</td>
</tr>
<tr>
<td>156.25 MHz</td>
<td>0.77</td>
<td>3.3</td>
<td>pS RMS</td>
</tr>
</tbody>
</table>

Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; $V_{DD} = 3.3V$.
TIE was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; $V_{DD} = 3.3V$.

Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

Random & Deterministic Jitter Composition

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Random (Rj) (pS RMS)</th>
<th>Deterministic (Dj) (pS P-P)</th>
<th>Total Jitter (Tj) ($14 \times Rj + Dj$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.5 MHz</td>
<td>1.28</td>
<td>6.8</td>
<td>25.1 pS</td>
</tr>
<tr>
<td>106.25 MHz</td>
<td>1.28</td>
<td>8.4</td>
<td>26.6 pS</td>
</tr>
<tr>
<td>125 MHz</td>
<td>1.20</td>
<td>8.0</td>
<td>25.2 pS</td>
</tr>
<tr>
<td>156.25 MHz</td>
<td>1.27</td>
<td>8.6</td>
<td>26.6 pS</td>
</tr>
</tbody>
</table>

Rj and Dj measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software.

Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)
Pin Description and Recommended Circuit

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_C</td>
<td>Control</td>
<td>Frequency Control by changing voltage</td>
</tr>
<tr>
<td>2</td>
<td>E / D</td>
<td>Logic</td>
<td>Enable / Disable Control of Output (0 = Disabled)</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
<td>Electrical Ground for V_{DD}</td>
</tr>
<tr>
<td>4</td>
<td>Output</td>
<td>Output</td>
<td>HCMOS Oscillator Output</td>
</tr>
<tr>
<td>5</td>
<td>N. C.</td>
<td>Hi Z</td>
<td>No Connection (Factory Use ONLY)</td>
</tr>
<tr>
<td>6</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Power Supply Source Voltage</td>
</tr>
</tbody>
</table>

NOTES:
1. Includes pull-up resistor to V_{DD} to provide output when the pin (2) is No Connect.
2. Installation should include a 0.01µF bypass capacitor placed between V_{DD} (Pin 6) and GND (Pin 3) to minimize power supply line noise.

Enable / Disable Control

<table>
<thead>
<tr>
<th>Pin # 2 (state)</th>
<th>Output (Pin # 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPEN (No Connection)</td>
<td>ACTIVE Output</td>
</tr>
<tr>
<td>"1" Level $V_{IH} > 70% V_{DD}$</td>
<td>ACTIVE Output</td>
</tr>
<tr>
<td>"0" Level $V_{IL} < 30% V_{DD}$</td>
<td>High Impedance</td>
</tr>
</tbody>
</table>

Soldering Reflow Profile (2 times Maximum at 260°C for 10 seconds MAX)
Mechanical Dimensional Drawing & Pad Layout

TOP VIEW

Recommended Solder Pad Layout

Pin Connections

- #1) V_C
- #2) E/D
- #3) GND
- #4) Output
- #5) NC
- #6) V_{DD}

See Traceability (pg. 9) for more information.

Drawing is for reference to critical specifications defined by size measurements. Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary.
Tape and Reel Dimensions

1k Reel Dimensions in mm

2k Reel Dimensions in mm

Labeling (Reels and smaller packaging are labeled with the below)

- Fox Part Number: 793-35.328-2
- Quantity: 2000 pieces
- Description: FVXO-HC53BR-35.328
- Date Code: 0745 (YYWW 2007 45th wk)
- LOT #: 24435

An additional identification code is contained internally if tracking should ever be necessary.
Traceability – LOT Number & Serial Identification

LOT Number

The LOT Number has direct ties to the customer purchase order. The LOT Number is marked on the “Reel” label, and also stored internally on non-volatile memory inside the XPRESSO part. XPRESSO parts that are shipped Tape and Reel, are also placed in an Electro Static Discharge (ESD) bag and will have the LOT Number labeled on the exterior of the ESD bag.

It is recommended that the XPRESSO parts remain in this ESD bag during storage for protection and identification.

If the parts become separated from the label showing the LOT Number, it can be retrieved from inside one of the parts, and the information that can be obtained is listed below:

- Customer Purchase Order Number
- Internal Fox Sales Order Number
- Dates that the XPRESSO part was shipped from the factory
- The assigned customer part number
- The specification that the part was designed for

Serial Identification

The Serial ID is the individualized information about the configuration of that particular XPRESSO part. The Serial ID is unique for each and every XPRESSO part, and can be read by special Fox equipment.

With the Serial ID, the below information can be obtained about that individual, XPRESSO part:

- Equipment that the XPRESSO part was configured on
- Raw material used to configure the XPRESSO part
- Traceability of the raw material back to the foundries manufacturing lot
- Date and Time that the part was configured
- Any optimized electrical parameters based on customer specifications
- Electrical testing of the actual completed part
- Human resource that was monitoring the configuration of the part

Fox has equipment placed at key Fox locations World Wide to read the Lot Identification and Serial Number of any XPRESSO part produced and can then obtain the information from above within 24 hours.
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Component</th>
<th>Content (mg)</th>
<th>Content (wt%)</th>
<th>(CAS Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>Kovar</td>
<td>Nickel (Ni)</td>
<td>1.890</td>
<td>3.09%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt (Co)</td>
<td>1.113</td>
<td>1.82%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iron (Fe)</td>
<td>3.540</td>
<td>5.78%</td>
</tr>
<tr>
<td>Base</td>
<td>Ceramic</td>
<td>Alumina (Al₂O₃)</td>
<td>35.484</td>
<td>57.98%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon Oxide (SiO₂)</td>
<td>1.733</td>
<td>2.83%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium Oxide (Cr₂O₃)</td>
<td>0.268</td>
<td>0.44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum Oxide (MoO₂)</td>
<td>0.364</td>
<td>0.59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnesium Oxide (MgO)</td>
<td>0.234</td>
<td>0.38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium Oxide (CaO)</td>
<td>0.253</td>
<td>0.41%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tungsten (W)</td>
<td>6.290</td>
<td>10.28%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molybdenum (Mo)</td>
<td>0.195</td>
<td>0.32%</td>
</tr>
<tr>
<td></td>
<td>+ Nickel Plating</td>
<td>Nickel (Ni)</td>
<td>0.810</td>
<td>1.32%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt (Co)</td>
<td>0.203</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td>+ Gold Plating</td>
<td>Gold (Au)</td>
<td>0.281</td>
<td>0.46%</td>
</tr>
<tr>
<td></td>
<td>+ Seal ring</td>
<td>Iron (Fe)</td>
<td>2.438</td>
<td>3.98%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel (Ni)</td>
<td>1.309</td>
<td>2.14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt (Co)</td>
<td>0.768</td>
<td>1.25%</td>
</tr>
<tr>
<td></td>
<td>+ silver solder</td>
<td>Silver (Ag)</td>
<td>1.191</td>
<td>1.95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper (Cu)</td>
<td>0.210</td>
<td>0.34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aluminum (Al)</td>
<td>0.0021</td>
<td>0.00343%</td>
</tr>
<tr>
<td></td>
<td>I C</td>
<td>Silicon (Si)</td>
<td>0.950</td>
<td>1.55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gold (Au)</td>
<td>0.480</td>
<td>0.784%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adhesive</td>
<td>0.000210</td>
<td>0.000343%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Epoxy</td>
<td>0.00000700</td>
<td>0.00001144%</td>
</tr>
<tr>
<td>Crystal</td>
<td>Crystal</td>
<td>Silicon Dioxide (SiO₂)</td>
<td>1.170</td>
<td>1.91%</td>
</tr>
<tr>
<td></td>
<td>Electrode</td>
<td>Silver (Ag)</td>
<td>0.019</td>
<td>0.0310%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel (Ni)</td>
<td>0.000159</td>
<td>0.000260%</td>
</tr>
<tr>
<td></td>
<td>Adhesive</td>
<td>Silver (Ag)</td>
<td>0.00037</td>
<td>0.000605%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon (Si)</td>
<td>0.000125</td>
<td>0.000204%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>61.196</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
3rd Party (SGS) Material Report

Test Report

No. 2053204/EC
Date: Mar 01 2006
Page 1 of 2

FOX ELECTRONICS
5670 ENTERPRISE PARKWAY
FT. MYERS, FL 33905

Report on the submitted sample said to be CERAMIC SEAM SEAL OSCILLATOR.

SGS Job No. : 1981175
Supplier/Manufacturer : FOX ELECTRONICS
Sample Receiving Date : FEB 17 2006
Testing Period : FEB 18 - 24 2006

Test Requested:
1) To determine the Cadmium Content in the submitted sample.
2) To determine the Lead Content in the submitted sample.
3) To determine the Mercury Content in the submitted sample.
4) To determine the Hexavalent Chromium Content on the submitted sample.
5) To determine PBBs (polychlorinated biphenyls) and PBDEs (Polibrominated diphenylethers) of the submitted sample.

Test Method:
1-3) With reference to EPA Method 3051/3052. Analysis was performed by Inductively Coupled Argon Plasma-Atomic Emission Spectrometry (ICP-AES).
4) With reference to EPA Method 3060A & 7196A. The sample was alkaline digested by using EPA Method 3060A, and then analyzed by using Colorimetric method 7196A (by UV-Vis Spectrophotometer).
5) With reference to EPA Method 3540C/3550C. Analysis was performed by GC/MS or LC/MS.

Test Results: Please refer to next page.

Signed for and on behalf of
SGS Hong Kong Ltd

Ho Pe Ting, Family Laboratory Executive

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf. Attention is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full, without prior written permission of the Company.

© 2008 FOX ELECTRONICS | ISO9001:2000 Certified
Test Results

<table>
<thead>
<tr>
<th>Test Item</th>
<th>1</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Cadmium (Cd)</td>
<td>ND</td>
<td>2 ppm</td>
</tr>
<tr>
<td>2) Lead (Pb)</td>
<td>ND</td>
<td>2 ppm</td>
</tr>
<tr>
<td>3) Mercury (Hg)</td>
<td>ND</td>
<td>2 ppm</td>
</tr>
<tr>
<td>4) Hexavalent Chromium (Cr⁶⁺)</td>
<td>ND</td>
<td>2 ppm</td>
</tr>
</tbody>
</table>

(Results shown are of the total weight of samples)

Note:
- ppm = mg/kg
- ND = Not Detected
- Not detected is reported when the reading is less than detection limit value

<table>
<thead>
<tr>
<th>flame Retardants</th>
<th>1</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated Diphenyls (PBDEs)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Monobromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Dibromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Tribromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Teletabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Pentabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Hexabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Heptabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Octabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Nonabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Decabromobiphenyl</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Polybrominated Diphenylethers (PBDEs)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Monobromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Dibromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Tribromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Teletabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Pentabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Hexabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Heptabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Octabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Nonabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Decabromodiphenyl ether</td>
<td>ND</td>
<td>5 ppm</td>
</tr>
</tbody>
</table>

Note:
- ppm = mg/kg
- ND = Not Detected
- Not detected is reported when the reading is less than detection limit value

Sample Description:
1. Black Ceramic w/ Silver, Golden Metal w/ Silver Chips

End of Report
Mechanical Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Shock</td>
<td>Drop from 75cm to hardwood surface – 3 times</td>
</tr>
<tr>
<td>Mechanical Vibration</td>
<td>10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)</td>
</tr>
<tr>
<td>High Temperature Burn-in</td>
<td>Under Power @ 125°C for 2000 Hours (results below)</td>
</tr>
<tr>
<td>Hermetic Seal</td>
<td>He pressure: 4 ±1 kgf / cm² 2 Hour soak</td>
</tr>
</tbody>
</table>

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

![Graph showing frequency drift over time](image)
MTTF / FITS Calculations

Products are grouped together by process for MTTF calculations.
(All XpressO output and package types are manufactured with the same process)

- **Number of Parts Tested:** 360 (120 of each output type: HCMOS, LVDS, LVPECL)
- **Number of Failures:** 0
- **Test Temperature:** 125°C
- **Number of Hours:** 2000

MTTF was calculated using the following formulas:

1. Device Hours \((devhrs) = \text{(number of devices)} \times \text{(hours at elevated temperature in °K)} \)

2. \[
 MTTF = \frac{devhrs \times af \times 2}{\chi^2}
\]

3. \[
 FITS = \frac{1}{MTTF} \times 10^9
\]

<table>
<thead>
<tr>
<th>Label</th>
<th>Name</th>
<th>Formula/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>af</td>
<td>Acceleration Factor</td>
<td>(e^{\left(\frac{eV}{k}\right)\times\left(\frac{1}{t_1} - \frac{1}{t_2}\right)})</td>
</tr>
<tr>
<td>eV</td>
<td>Activation Energy</td>
<td>0.40 V</td>
</tr>
<tr>
<td>k</td>
<td>Bolzman’s Constant</td>
<td>(8.62 \times 10^{-5} \text{ eV/°K})</td>
</tr>
<tr>
<td>t₁</td>
<td>Operating Temperature</td>
<td>°K</td>
</tr>
<tr>
<td>t₂</td>
<td>Accelerated Temperature</td>
<td>°K</td>
</tr>
<tr>
<td>Θ</td>
<td>Theta</td>
<td>Confidence Level (60% industry standard)</td>
</tr>
<tr>
<td>r</td>
<td>Failures</td>
<td>Number of failed devices</td>
</tr>
</tbody>
</table>
| \(\chi^2 \) | Chi-Square | statistical significance for bivariate tabular analysis [table lookup] based on assumed Θ (Theta – confidence) and number of failures (r) For zero failures (60% Confidence): \(\chi^2 = 1.830 \)

DEVICE-HOURS = 360 x 2000 HOURS = 720,000

ACCELERATION FACTOR = \(e^{\left(\frac{0.40}{8.625}\right)\times\left(\frac{1}{298} - \frac{1}{398}\right)} = 49.91009 \)

MTTF = \(\frac{720,000 \times 49.91009 \times 2}{1.833} = 15,607,065 \text{ Hours} \)

Failure Rate = \(\frac{1.833}{720,000 \times 49.91009 \times 2} = 6.41E-8 \)

FITS = Failure Rate \(\times 1 \text{E}9 = 64 \)
The above specifications, having been carefully prepared and checked, is believed to be accurate at the time of publication; however, no responsibility is assumed by Fox Electronics for inaccuracies.